Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(3): e0172788, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28253287

RESUMEN

Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Pulmonares/secundario , Pulmón/patología , Melanoma Experimental/patología , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Animales , Plaquetas/fisiología , Agregación Celular , Línea Celular Tumoral , Proliferación Celular , Pulmón/irrigación sanguínea , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Ratones , Microcirculación
2.
J Exp Med ; 209(4): 819-35, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22451716

RESUMEN

Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features.


Asunto(s)
Plaquetas/fisiología , Comunicación Celular , Monocitos/fisiología , Neutrófilos/fisiología , Trombosis de la Vena/etiología , Animales , Factor XII/metabolismo , Ratones , Ratones Endogámicos C57BL , Selectina-P/fisiología , Tromboplastina/fisiología
3.
Nat Med ; 16(1): 75-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19966813

RESUMEN

The ductus arteriosus (DA) is a fetal shunt vessel between the pulmonary artery and the aorta that closes promptly after birth. Failure of postnatal DA closure is a major cause of morbidity and mortality particularly in preterm neonates. The events leading to DA closure are incompletely understood. Here we show that platelets have an essential role in DA closure. Using intravital microscopy of neonatal mice, we observed that platelets are recruited to the luminal aspect of the DA during closure. DA closure is impaired in neonates with malfunctioning platelet adhesion or aggregation or with defective platelet biogenesis. Defective DA closure resulted in a left-to-right shunt with increased pulmonary perfusion, pulmonary vascular remodeling and right ventricular hypertrophy. Our findings indicate that platelets are crucial for DA closure by promoting thrombotic sealing of the constricted DA and by supporting luminal remodeling. A retrospective clinical study revealed that thrombocytopenia is an independent predictor for failure of DA closure in preterm human newborns, indicating that platelets are likely to contribute to DA closure in humans.


Asunto(s)
Plaquetas/fisiología , Conducto Arterial/embriología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Antiinflamatorios no Esteroideos/farmacología , Plaquetas/efectos de los fármacos , Conducto Arterial/efectos de los fármacos , Conducto Arterioso Permeable/etiología , Humanos , Indometacina/farmacología , Recién Nacido/crecimiento & desarrollo , Ratones , Adhesividad Plaquetaria/fisiología , Agregación Plaquetaria/fisiología , Recuento de Plaquetas , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA