Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Chem Biol ; 18(3): 244-255, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35058646

RESUMEN

Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell's interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved-a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a 'metric-enabled approach for synthetic receptor engineering' (MEASRE).


Asunto(s)
Receptores Artificiales , Animales , Mamíferos , Biología Sintética
2.
Nat Commun ; 15(1): 5618, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965227

RESUMEN

Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Vesículas Extracelulares/metabolismo , Humanos , Nanopartículas/química , Ingeniería de Proteínas/métodos , Microdominios de Membrana/metabolismo , Lípidos/química , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Sistemas de Liberación de Medicamentos , Transporte de Proteínas , Células HEK293 , Liposomas
3.
Cell Syst ; 13(12): 950-973, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36549273

RESUMEN

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética , Animales , Transgenes/genética , Comunicación Celular , Mamíferos/genética
4.
Curr Opin Syst Biol ; 282021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34527830

RESUMEN

Synthetic biology increasingly enables the construction of sophisticated functions in mammalian cells. A particularly promising frontier combines concepts drawn from industrial process control engineering-which is used to confer and balance properties such as stability and efficiency-with understanding as to how living systems have evolved to perform similar tasks with biological components. In this review, we first survey the state-of-the-art for both technologies and strategies available for genetic programming in mammalian cells. We then discuss recent progress in implementing programming objectives inspired by engineered and natural control mechanisms. Finally, we consider the transformative role of model-guided design in the present and future construction of customized mammalian cell functions for applications in biotechnology, medicine, and fundamental research.

5.
Cell Syst ; 12(9): 885-899.e8, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34352221

RESUMEN

Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Diferenciación Celular/genética , Fibroblastos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nat Commun ; 11(1): 779, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034124

RESUMEN

Engineering mammalian cells to carry out sophisticated and customizable genetic programs requires a toolkit of multiple orthogonal and well-characterized transcription factors (TFs). To address this need, we develop the COmposable Mammalian Elements of Transcription (COMET)-an ensemble of TFs and promoters that enable the design and tuning of gene expression to an extent not, to the best of our knowledge, previously possible. COMET currently comprises 44 activating and 12 inhibitory zinc-finger TFs and 83 cognate promoters, combined in a framework that readily accommodates new parts. This system can tune gene expression over three orders of magnitude, provides chemically inducible control of TF activity, and enables single-layer Boolean logic. We also develop a mathematical model that provides mechanistic insights into COMET performance characteristics. Altogether, COMET enables the design and construction of customizable genetic programs in mammalian cells.


Asunto(s)
Ingeniería Genética/métodos , Mamíferos/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Animales , Línea Celular , Células HEK293 , Humanos , Plásmidos/genética , Ingeniería de Proteínas/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Transcripción Genética , Dedos de Zinc/genética
7.
Synth Biol (Oxf) ; 5(1): ysaa017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392392

RESUMEN

Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood. In general, it would be useful to understand how receptor design choices influence performance characteristics. In this study, we examined the modular extracellular sensor architecture (MESA) and systematically evaluated previously unexamined design choices, yielding substantially improved receptors. A key finding that might extend to other receptor systems is that the choice of transmembrane domain (TMD) is important for generating high-performing receptors. To provide mechanistic insights, we adopted and employed a Förster resonance energy transfer-based assay to elucidate how TMDs affect receptor complex formation and connected these observations to functional performance. To build further insight into these phenomena, we developed a library of new MESA receptors that sense an expanded set of ligands. Based upon these explorations, we conclude that TMDs affect signaling primarily by modulating intracellular domain geometry. Finally, to guide the design of future receptors, we propose general principles for linking design choices to biophysical mechanisms and performance characteristics.

8.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31194909

RESUMEN

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Técnicas de Cultivo de Célula , Ingeniería Celular , Células Endoteliales/citología , Fibroblastos/citología , Técnicas Analíticas Microfluídicas , Adenocarcinoma del Pulmón/irrigación sanguínea , Humanos , Hidrogeles/química , Microcirculación
9.
Cell Rep ; 19(7): 1456-1466, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514664

RESUMEN

Abetalipoproteinemia (ABL) is an inherited disorder of lipoprotein metabolism resulting from mutations in microsomal triglyceride transfer protein (MTTP). In addition to expression in the liver and intestine, MTTP is expressed in cardiomyocytes, and cardiomyopathy has been reported in several ABL cases. Using induced pluripotent stem cells (iPSCs) generated from an ABL patient homozygous for a missense mutation (MTTPR46G), we show that human hepatocytes and cardiomyocytes exhibit defects associated with ABL disease, including loss of apolipoprotein B (apoB) secretion and intracellular accumulation of lipids. MTTPR46G iPSC-derived cardiomyocytes failed to secrete apoB, accumulated intracellular lipids, and displayed increased cell death, suggesting intrinsic defects in lipid metabolism due to loss of MTTP function. Importantly, these phenotypes were reversed after the correction of the MTTPR46G mutation by CRISPR/Cas9 gene editing. Together, these data reveal clear cellular defects in iPSC-derived hepatocytes and cardiomyocytes lacking MTTP activity, including a cardiomyocyte-specific regulated stress response to elevated lipids.


Asunto(s)
Apolipoproteínas B/metabolismo , Proteínas Portadoras/metabolismo , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Abetalipoproteinemia/metabolismo , Edición Génica , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA