Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Physiol ; 594(11): 2795-810, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26775687

RESUMEN

KEY POINTS: Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. ABSTRACT: The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to < 0.1 mm. The rapid activation of SOCE upon Ca(2+) release was consistent with the presence of STIM1L in both fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 µm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2+) ]cyto with [Ca(2+) ]t-sys reaching final plateaus in the millimolar range. For the same [Ca(2+) ]cyto , t-system Ca(2+) fluxes of fast-twitch fibres were greater than that in slow-twitch fibres. In addition, simultaneous imaging of t-system and SR Ca(2+) signals indicated that both membrane compartments accumulated Ca(2+) at similar rates and that SOCE was activated early during SR Ca(2+) depletion.


Asunto(s)
Calcio/fisiología , Membrana Celular/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Animales , Ratas , Ratas Wistar
2.
Am J Respir Cell Mol Biol ; 50(6): 1096-106, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24400695

RESUMEN

Critical illness myopathies in patients with sepsis or sustained mechanical ventilation prolong intensive care treatment and threaten both patients and health budgets; no specific therapy is available. Underlying pathophysiological mechanisms are still patchy. We characterized IL-1α action on muscle performance in "skinned" muscle fibers using force transducers and confocal Ca(2+) fluorescence microscopy for force/Ca(2+) transients and Ca(2+) sparks. Association of IL-1α with sarcoplasmic reticulum (SR) release channel, ryanodine receptor (RyR) 1, was investigated with coimmunoprecipitation and confocal immunofluorescence colocalization. Membrane integrity was studied in single, intact fibers challenged with IL-1α. IL-1α reversibly stabilized Mg(2+) inhibition of Ca(2+) release. Low Mg(2+)-induced force and Ca(2+) transients were reversibly abolished by IL-1α. At normal Mg(2+), IL-1α reversibly increased caffeine-induced force and Ca(2+) transients. IL-1α reduced SR Ca(2+) leak via RyR1, as judged by (1) increased SR Ca(2+) retention, (2) increased IL-1α force transients being reproduced by 25 µM tetracaine, and (3) reduced Ca(2+) spark frequencies by IL-1α or tetracaine. Coimmunoprecipitation confirmed RyR1/IL-1 association. RyR1/IL-1 immunofluorescence patterns perfectly colocalized. Long-term, 8-hour IL-1α challenge of intact muscle fibers compromised membrane integrity in approximately 50% of fibers, and confirmed intracellular IL-1α deposition. IL-1α exerts a novel, specific, and reversible interaction mechanism with the skeletal muscle RyR1 macromolecular release complex without the need to act via its membrane IL-1 receptor, as IL-1R membrane expression levels were not detectable in Western blots or immunostaining of single fibers. We present a potential explanation of how the inflammatory mediator, IL-1α, may contribute to muscle weakness in critical illness.


Asunto(s)
Interleucina-1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Enfermedad Crítica , Magnesio/metabolismo , Ratones , Ratones Endogámicos C57BL , Debilidad Muscular/metabolismo , Unión Proteica/fisiología , Retículo Sarcoplasmático/metabolismo
3.
J Physiol ; 592(17): 3727-46, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973406

RESUMEN

Skeletal muscle fibres are large and highly elongated cells specialized for producing the force required for posture and movement. The process of controlling the production of force within the muscle, known as excitation-contraction coupling, requires virtually simultaneous release of large amounts of Ca(2+) from the sarcoplasmic reticulum (SR) at the level of every sarcomere within the muscle fibre. Here we imaged Ca(2+) movements within the SR, tubular (t-) system and in the cytoplasm to observe that the SR of skeletal muscle is a connected network capable of allowing diffusion of Ca(2+) within its lumen to promote the propagation of Ca(2+) release throughout the fibre under conditions where inhibition of SR ryanodine receptors (RyRs) was reduced. Reduction of cytoplasmic [Mg(2+)] ([Mg(2+)]cyto) induced a leak of Ca(2+) through RyRs, causing a reduction in SR Ca(2+) buffering power argued to be due to a breakdown of SR calsequestrin polymers, leading to a local elevation of [Ca(2+)]SR. The local rise in [Ca(2+)]SR, an intra-SR Ca(2+) transient, induced a local diffusely rising [Ca(2+)]cyto. A prolonged Ca(2+) wave lasting tens of seconds or more was generated from these events. Ca(2+) waves were dependent on the diffusion of Ca(2+) within the lumen of the SR and ended as [Ca(2+)]SR dropped to low levels to inactivate RyRs. Inactivation of RyRs allowed re-accumulation of [Ca(2+)]SR and the activation of secondary Ca(2+) waves in the persistent presence of low [Mg(2+)]cyto if the threshold [Ca(2+)]SR for RyR opening could be reached. Secondary Ca(2+) waves occurred without an abrupt reduction in SR Ca(2+) buffering power. Ca(2+) release and wave propagation occurred in the absence of Ca(2+)-induced Ca(2+) release. These observations are consistent with the activation of Ca(2+) release through RyRs of lowered cytoplasmic inhibition by [Ca(2+)]SR or store overload-induced Ca(2+) release. Restitution of SR Ca(2+) buffering power to its initially high value required imposing normal resting ionic conditions in the cytoplasm, which re-imposed the normal resting inhibition on the RyRs, allowing [Ca(2+)]SR to return to endogenous levels without activation of store overload-induced Ca(2+) release. These results are discussed in the context of how pathophysiological Ca(2+) release such as that occurring in malignant hyperthermia can be generated.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Magnesio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 307(5): H689-700, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25015964

RESUMEN

Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Urocortinas/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ventrículos Cardíacos/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Conejos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Serina/metabolismo , Transducción de Señal
5.
Clin Exp Pharmacol Physiol ; 41(7): 524-32, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25040398

RESUMEN

Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans) and Ca(2+) transient amplitude (Ca(2+) alternans). The cause of alternans is multifactorial; however, alternans always originate from disturbances of the bidirectional coupling between membrane voltage (Vm ) and intracellular calcium ([Ca(2+) ]i ). Bidirectional coupling refers to the fact that, in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca(2+) ]i that is required for contraction (a process referred to as excitation-contraction coupling); conversely, changes of [Ca(2+) ]i control Vm because important membrane currents are Ca(2+) dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca(2+) signalling. Herein we review how two key factors of cardiac cellular Ca(2+) cycling, namely the release of Ca(2+) from internal stores and the capability of clearing the cytosol from Ca(2+) after each beat, determine the conditions under which alternans occurs. The contributions from key Ca(2+) -handling proteins (i.e. surface membrane channels, ion pumps and transporters and internal Ca(2+) release channels) are discussed.


Asunto(s)
Calcio/metabolismo , Sistema de Conducción Cardíaco/fisiología , Corazón/fisiología , Miocardio/citología , Miocitos Cardíacos/metabolismo , Presión Sanguínea , Humanos , Miocardio/metabolismo
6.
Am J Physiol Cell Physiol ; 303(5): C567-76, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22785116

RESUMEN

The majority of the skeletal muscle plasma membrane is internalized as part of the tubular (t-) system, forming a standing junction with the sarcoplasmic reticulum (SR) membrane throughout the muscle fiber. This arrangement facilitates not only a rapid and large release of Ca(2+) from the SR for contraction upon excitation of the fiber, but has also direct implications for other interdependent cellular regulators of Ca(2+). The t-system plasma membrane Ca-ATPase (PMCA) and store-operated Ca(2+) entry (SOCE) can also be activated upon release of SR Ca(2+). In muscle, the SR Ca(2+) sensor responsible for rapidly activated SOCE appears to be the stromal interacting molecule 1L (STIM1L) isoform of STIM1 protein, which directly interacts with the Orai1 Ca(2+) channel in the t-system. The common isoform of STIM1 is STIM1S, and it has been shown that STIM1 together with Orai1 in a complex with the partner protein of STIM (POST) reduces the activity of the PMCA. We have previously shown that Orai1 and STIM1 are upregulated in dystrophic mdx mouse muscle, and here we show that STIM1L and PMCA are also upregulated in mdx muscle. Moreover, we show that the ratios of STIM1L to STIM1S in wild-type (WT) and mdx muscle are not different. We also show a greater store-dependent Ca(2+) influx in mdx compared with WT muscle for similar levels of SR Ca(2+) release while normal activation and deactivation properties were maintained. Interestingly, the fiber-averaged ability of WT and mdx muscle to extrude Ca(2+) via PMCA was found to be the same despite differences in PMCA densities. This suggests that there is a close relationship among PMCA, STIM1L, STIM1S, Orai1, and also POST expression in mdx muscle to maintain the same Ca(2+) extrusion properties as in the WT muscle.


Asunto(s)
Señalización del Calcio/fisiología , Membrana Celular/enzimología , Glicoproteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Colorantes Fluorescentes , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/fisiología , Proteína ORAI1 , Isoformas de Proteínas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Molécula de Interacción Estromal 1
7.
J Physiol ; 590(3): 475-92, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22155929

RESUMEN

Mammalian skeletal muscle fibres possess a tubular (t-) system that consists of regularly spaced transverse elements which are also connected in the longitudinal direction. This tubular network provides a pathway for the propagation of action potentials (APs) both radially and longitudinally within the fibre, but little is known about the actual radial and longitudinal AP conduction velocities along the tubular network in mammalian skeletal muscle fibres. The aim of this study was to track AP propagation within the t-system network of fast-twitch rat muscle fibres with high spatio-temporal resolution when the t-system was isolated from the surface membrane. For this we used high speed confocal imaging of AP-induced Ca(2+) release in contraction-suppressed mechanically skinned fast-twitch fibres where the t-system can be electrically excited in the absence of the surface membrane. Supramaximal field pulses normally elicited a synchronous AP-induced release of Ca(2+) along one side of the fibre axis which propagated uniformly across the fibre. In some cases up to 80 or more adjacent transverse tubules failed to be excited by the field pulse, while adjacent areas responded with normal Ca(2+) release. In these cases a continuous front of Ca(2+) release with an angle to the scanning line was observed due to APs propagating longitudinally. From these observations the radial/transversal and longitudinal AP conduction velocities along the tubular network deeper in the fibre under our conditions (19 ± 1°C) ranged between 8 and 11 µm ms(-1) and 5 to 9 µm ms(-1), respectively, using different methods of estimation. The longitudinal propagation of APs appeared to be markedly faster closer to the edge of the fibre, in agreement with the presence of dense longitudinal connections immediately below the surface of the fibre and more sparse connections at deeper planes within the fibre. During long trains of closely spaced field pulses the AP-elicited Ca(2+) releases became non-synchronous along the fibre axis. This is most likely caused by local tubular K(+) accumulation that produces local depolarization and local slowing of AP propagation. Longitudinally propagating APs may reduce such inhomogeneities by exciting areas of delayed AP onset. Clearly, the longitudinal tubular pathways within the fibre for excitation are used as a safety mechanism in situations where a local depolarization obstructs immediate excitation from the sarcolemma. Results obtained from this study also provide an explanation for the pattern of contractures observed in rippling muscle disease.


Asunto(s)
Potenciales de Acción/fisiología , Calcio/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Animales , Masculino , Microscopía Confocal , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Ratas , Ratas Wistar
8.
Am J Physiol Cell Physiol ; 299(1): C42-50, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20427714

RESUMEN

Store-operated Ca(2+) entry (SOCE) is an important mechanism in virtually all cells. In adult skeletal muscle, this mechanism is highly specialized for the rapid delivery of Ca(2+) from the transverse tubule into the junctional cleft during periods of depleting Ca(2+) release. In dystrophic muscle fibers, SOCE may be a source of Ca(2+) overload, leading to cell necrosis. However, this possibility is yet to be examined in an adult fiber during Ca(2+) release. To examine this, Ca(2+) in the tubular system and cytoplasm were simultaneously imaged during direct release of Ca(2+) from sarcoplasmic reticulum (SR) in skeletal muscle fibers from healthy (wild-type, WT) and dystrophic mdx mouse. The mdx fibers were found to have normal activation and deactivation properties of SOCE. However, a depression of the cytoplasmic Ca(2+) transient in mdx compared with WT fibers was observed, as was a shift in the SOCE activation and deactivation thresholds to higher SR Ca(2+) concentrations ([Ca(2+)](SR)). The shift in SOCE activation and deactivation thresholds was accompanied by an approximately threefold increase in STIM1 and Orai1 proteins in dystrophic muscle. While the mdx fibers can introduce more Ca(2+) into the fiber for an equivalent depletion of [Ca(2+)](SR) via SOCE, it remains unclear whether this is deleterious.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Activación del Canal Iónico , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Animales , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Técnicas In Vitro , Cinética , Ratones , Ratones Endogámicos mdx , Microscopía Confocal , Distrofias Musculares/genética , Proteína ORAI1 , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1
9.
Pflugers Arch ; 460(5): 813-23, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20577885

RESUMEN

Store-operated Ca(2+) entry (SOCE) has been found to be a rapidly activated robust mechanism in skeletal muscle fibres. It is conducted across the junctional membranes by stromal interacting molecule 1 (STIM1) and Orai1, which are housed in the sarcoplasmic reticulum (SR) and tubular (t-) system, respectively. These molecules that conduct SOCE appear evenly distributed throughout the SR and t-system of skeletal muscle, allowing for rapid and local control in response to depletions of Ca(2+) from SR. The significant depletion of SR Ca(2+) required to reach the activation threshold for SOCE could only be achieved during prolonged bouts of excitation-contraction coupling (EC coupling) in a healthy skeletal muscle fibre, meaning that this mechanism is not responsible for refilling the SR with Ca(2+) during periods of fibre quiescence. While Ca(2+) in SR remains below the activation threshold for SOCE, a low-amplitude persistent Ca(2+) influx is provided to the junctional cleft. This article reviews the properties of SOCE in skeletal muscle and the proposed molecular mechanism, assesses its potential physiological roles during EC coupling, namely refilling the SR with Ca(2+) and simple balancing of Ca(2+) within the cell, and also proposes the possibility of SOCE as a potential regulator of t-system and SR membrane protein function.


Asunto(s)
Calcio/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Fibras Musculares Esqueléticas/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Modelos Biológicos , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo
10.
J Physiol ; 586(21): 5077-89, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18772207

RESUMEN

The tubular (t) system is essential for normal function of skeletal muscle fibre, acting as a conduit for molecules and ions within the cell. However, t system accessibility and interconnectivity have been mainly assessed in fixed cells where the t system no longer fully represents that of the living cell. Here, fluorescent dyes of different diameter were allowed to equilibrate within the t system of intact fibres from toad, mechanically skinned to trap the dyes, and then imaged using confocal microscopy to investigate t system accessibility and interconnectivity. Dual imaging of rhod-2 and a 500 kDa fluorescein dextran identified regions throughout the t system that differed in the accessibility to molecules of different molecular weight. Restrictions within the t system lumen occurred at the junctions of the longitudinal and transverse tubules and also where a transverse tubule split into two tubules to maintain their alignment with Z-lines of adjacent mis-registered sarcomeres. Thus, three types of tubule, transverse, longitudinal and Z, can be identified by their lumenal diameter in this network. The latter we define for the first time as a tubule with a narrow lumen that is responsible for the change in register. Stretch-induced t system vacuolation showed exclusive access of rhod-2 to these structures indicating their origin was the longitudinal tubules. Exposing the sealed t system to highly hypertonic solution reversed vacuolation of longitudinal tubules and also revealed that these tubules are not collapsible. Fluorescence recovery after photobleaching (FRAP) measurements of t system-trapped fluo-5 N showed interconnectivity through the t system along the axis of the fibre. However, diffusion occurred at a rate slower than expected given the known number of longitudinal tubules linking adjacent transverse tubules. This could be explained by the observed narrow opening to the longitudinal tubules from transverse tubules, reducing the effective cross-sectional area in which molecules could move within the t system.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Animales , Bufo marinus , Colorantes , Colorantes Fluorescentes , Microscopía Confocal , Presión Osmótica , Coloración y Etiquetado
11.
Clin Exp Pharmacol Physiol ; 35(12): 1482-7, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18785978

RESUMEN

1. Here we review evidence obtained recently by us indicating that the poor longevity of isolated mammalian skeletal muscle preparations at temperatures in the normal physiological range is related to the increased production of reactive oxygen species (ROS) in the resting muscle. 2. Temperature-induced ROS production increases markedly above 32 degrees C in isolated, resting skeletal muscle and is associated with the gradual and irreversible functional deterioration of the muscle. 3. The majority of the temperature-induced muscle ROS originates in the mitochondria and acts on various sites involved in excitation-contraction coupling.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Animales , Humanos
12.
PLoS One ; 7(4): e35265, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493744

RESUMEN

BACKGROUND: Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R) models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca(2+)](i)) transients and caffeine-releasable sarcoplasmic reticulum (SR) Ca(2+) were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a), and phosphorylated phospholamban (p-PLB), respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca(2+)](i) transient amplitude and caffeine-releasable SR Ca(2+) content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM) and BIM28163 (100 nM), completely blocked the effects of GHS on both cell shortening and [Ca(2+)](i) transients. CONCLUSION/SIGNIFICANCE: Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca(2+) content) to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury.


Asunto(s)
Calcio/metabolismo , Ghrelina/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Oligopéptidos/farmacología , Retículo Sarcoplasmático/efectos de los fármacos , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Expresión Génica , Masculino , Ratones , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Técnicas de Cultivo de Órganos , Hormonas Peptídicas/farmacología , Fosforilación , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Aging Cell ; 10(4): 675-85, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21418512

RESUMEN

Store-operated Ca(2+) entry (SOCE) is a robust mechanism in skeletal muscle, supported by abundant STIM1 and Orai1 in the junctional membranes. The precise role of SOCE in skeletal muscle Ca(2+) homeostasis and excitation-contraction coupling remains to be defined. Regardless, it remains important to determine whether the function and capacity of SOCE changes in aged skeletal muscle. We identified an approximate 40% decline in the expression of the integral SOCE protein, stromal interacting molecule 1 (STIM1), but no such decline in its coupling partner, Orai1, in muscle fibers from aged mice. To determine whether this changed aspects of SOCE functionality in skeletal muscle in aged mice, Ca(2+) in the cytoplasm and t-system were continuously and simultaneously imaged on a confocal microscope during sarcoplasmic reticulum Ca(2+) release and compared to experiments under identical conditions using muscle fibers from young mice. Normal activation, deactivation, Ca(2+) influx, and spatiotemporal characteristics of SOCE were found to persist in skeletal muscle from aged mice. Thus, SOCE remains a robust mechanism in aged skeletal muscle despite the decline in STIM1 protein expression, suggesting STIM1 is in excess in young skeletal muscle.


Asunto(s)
Envejecimiento/metabolismo , Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Animales , Canales de Calcio/metabolismo , Línea Celular , Acoplamiento Excitación-Contracción , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteína ORAI1 , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1
14.
Cell Calcium ; 47(5): 458-67, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20434768

RESUMEN

Skeletal muscle is highly specialized for the rapid delivery of Ca(2+) to the contractile apparatus during excitation-contraction coupling (EC coupling). Previous studies have shown the presence of a relatively fast-activated store-operated Ca(2+) entry (SOCE) mechanism (<1s) to be present in skeletal muscle, unlike the situation occurring in non-excitable cells. We simultaneously imaged [Ca(2+)] in the t-system and cytoplasm in mechanically skinned fibers during SR Ca(2+) release and observed both cell-wide Ca(2+) release and Ca(2+) waves. SOCE activation followed cell-wide Ca(2+) release from high sarcoplasmic reticulum (SR) [Ca(2+)] ([Ca(2+)](SR)) by seconds, consistent with depletion of [Ca(2+)](SR) to an absolute threshold for SOCE and an unformed SOCE complex at high [Ca(2+)](SR). Ca(2+) waves occurred at low [Ca(2+)](SR), close to the threshold for SOCE, minimizing the time between Ca(2+) release and Ca(2+) influx. Local activation of SOCE during Ca(2+) waves occurred in approximately 27ms following local initiation of SR depletion indicating a steep relationship between [Ca(2+)](SR) and SOCE activation. Most of this delay was due to slow release of Ca(2+) from SR, leaving only milliseconds at most for the activation of Ca(2+) entry following store depletion. SOCE was also observed to deactivate effectively instantly during store refilling at low [Ca(2+)](SR). These rapid kinetics of SOCE persisted as subsequent Ca(2+) waves propagated along the fiber. Thus we show for the first time millisecond activation and deactivation of SOCE during low amplitude [Ca(2+)](SR) oscillations at low [Ca(2+)](SR). To account for the observed Ca(2+) movements we propose the SOCE complex forms during the progressive depletion of [Ca(2+)](SR) prior to reaching the activation threshold of SOCE and this complex remains stable at low [Ca(2+)](SR).


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Animales , Canales de Calcio/análisis , Células Cultivadas , Ratones , Proteína ORAI1 , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo
15.
Am J Physiol Cell Physiol ; 293(2): C650-60, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17459949

RESUMEN

To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O(2)(*-)) production, O(2)(*-) released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37 degrees C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37 degrees C under the same conditions. The rate of O(2)(*-) production increased marginally when the temperature was increased from 22 to 32 degrees C, but increased fivefold when the temperature was increased from 22 to 37 degrees C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37 degrees C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22 degrees C for up to 120 min. The specific maximum Ca(2+)-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca(2+)-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O(2)(*-) production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37 degrees C by affecting the contractile apparatus and plasma membrane.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Fuerza Muscular , Músculo Esquelético/metabolismo , Superóxidos/metabolismo , Temperatura , Potenciales de Acción , Animales , Antioxidantes/farmacología , Calcio/metabolismo , Óxidos N-Cíclicos/farmacología , Líquido Extracelular/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Long-Evans , Marcadores de Spin , Superóxido Dismutasa/metabolismo , Factores de Tiempo
16.
Am J Physiol Cell Physiol ; 292(4): C1353-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17122413

RESUMEN

Mammalian skeletal muscles generate marked amounts of superoxide (O(2)(.-)) at 37 degrees C, but it is not well understood which is the main source of O(2)(.-) production in the muscle fibers and how this interferes with muscle function. To answer these questions, O(2)(.-) production and twitch force responses were measured at 37 degrees C in mechanically skinned muscle fibers of rat extensor digitorum longus (EDL) muscle. In mechanically skinned fibers, the sarcolemma is removed avoiding potential sources of O(2)(.-) production that are not intrinsically part of the muscle fibers, such as nerve terminals, blood cells, capillaries and other blood vessels in the whole muscle. O(2)(.-) production was also measured in split single EDL muscle fibers, where part of the sarcolemma remained attached, and small bundles of intact isolated EDL muscle fibers at rest, in the presence and absence of modifiers of mitochondrial function. The results lead to the conclusion that mitochondrial production of O(2)(.-) accounts for most of the O(2)(.-) measured intracellularly or extracellularly in skeletal muscle fibers at rest and at 37 degrees C. Muscle fiber excitability at 37 degrees C was greatly improved in the presence of a membrane permeant O(2)(.-) dismutase mimetic (Tempol), demonstrating a direct link between O(2)(.-) production in the mitochondria and muscle fiber performance. This implicates mitochondrial O(2)(.-) production in the down-regulation of skeletal muscle function, thus providing a feedback pathway for communication between mitochondria and plasma membranes that is not directly related to the main function of mitochondria as the power plant of the mammalian muscle cell.


Asunto(s)
Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Superóxidos/metabolismo , Animales , Óxidos N-Cíclicos/farmacología , Citocromos c/metabolismo , Técnicas In Vitro , Masculino , Contracción Muscular , Oxidación-Reducción , Ratas , Ratas Long-Evans , Ratas Wistar , Sarcolema/metabolismo , Marcadores de Spin , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA