Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.363
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(1): 79-94.e24, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181743

RESUMEN

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Humanos , Anticuerpos ampliamente neutralizantes , Antígenos CD4 , Moléculas de Adhesión Celular , VIH-1/fisiología , Macaca , Vacunas contra el SIDA/inmunología
2.
Cell ; 187(12): 2919-2934.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38761800

RESUMEN

A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Linfocitos B , Anticuerpos Anti-VIH , VIH-1 , Humanos , Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Linaje de la Célula , Liposomas , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Mutación , Proteína gp41 de Envoltorio del VIH/inmunología
3.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36402135

RESUMEN

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Asunto(s)
Inmunoglobulina M , Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Ratones , Embarazo/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Pruebas de Neutralización , Infección por el Virus Zika/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/aislamiento & purificación
4.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242577

RESUMEN

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Citocinas/metabolismo , Femenino , Haplorrinos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Carga Viral , Replicación Viral
5.
Mol Cell ; 84(14): 2747-2764.e7, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059371

RESUMEN

A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.


Asunto(s)
COVID-19 , Microscopía por Crioelectrón , Mutación , Conformación Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , COVID-19/virología , COVID-19/inmunología , Unión Proteica , Evasión Inmune , Modelos Moleculares , Dominios Proteicos , Sitios de Unión
6.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37595580

RESUMEN

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Asunto(s)
Autofagia , Vía de Señalización Hippo , Animales , Ratones , Supervivencia Celular , Tamaño de los Órganos
7.
Mol Cell ; 82(11): 2050-2068.e6, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447081

RESUMEN

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
8.
Nature ; 620(7972): 181-191, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37380767

RESUMEN

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.


Asunto(s)
Mama , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Mama/citología , Mama/inmunología , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales/clasificación , Células Endoteliales/metabolismo , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Genómica , Inmunidad
9.
EMBO J ; 42(23): e111122, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916890

RESUMEN

Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión
10.
Nature ; 594(7864): 553-559, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33971664

RESUMEN

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Resfriado Común/prevención & control , Reacciones Cruzadas/inmunología , Pandemias , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , COVID-19/epidemiología , Vacunas contra la COVID-19/inmunología , Resfriado Común/inmunología , Resfriado Común/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca/inmunología , Masculino , Modelos Moleculares , Nanopartículas/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Tráquea , Vacunación
11.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39082646

RESUMEN

Metagenomics involves the study of genetic material obtained directly from communities of microorganisms living in natural environments. The field of metagenomics has provided valuable insights into the structure, diversity and ecology of microbial communities. Once an environmental sample is sequenced and processed, metagenomic binning clusters the sequences into bins representing different taxonomic groups such as species, genera, or higher levels. Several computational tools have been developed to automate the process of metagenomic binning. These tools have enabled the recovery of novel draft genomes of microorganisms allowing us to study their behaviors and functions within microbial communities. This review classifies and analyzes different approaches of metagenomic binning and different refinement, visualization, and evaluation techniques used by these methods. Furthermore, the review highlights the current challenges and areas of improvement present within the field of research.


Asunto(s)
Metagenómica , Metagenómica/métodos , Biología Computacional/métodos , Metagenoma , Algoritmos , Genómica/métodos
12.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900807

RESUMEN

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Fragmentos Fc de Inmunoglobulinas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , SARS-CoV-2/inmunología , Ratones , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Humanos , Femenino , Dominios Proteicos/inmunología , Carga Viral , Pulmón/virología , Pulmón/inmunología , Pulmón/patología
13.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180084

RESUMEN

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Humanos , Ratones , Animales , Mesocricetus , Receptor para Productos Finales de Glicación Avanzada/genética , Síndrome Post Agudo de COVID-19 , Ratones Transgénicos , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Pulmón
14.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574702

RESUMEN

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Asunto(s)
Células Cromafines , Vesículas de Núcleo Denso , Ratones , Animales , Sinaptotagminas/metabolismo , Exocitosis/fisiología , Membrana Celular/metabolismo , Células Cromafines/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Calcio/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(42): e2309843120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812725

RESUMEN

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.


Asunto(s)
Dopamina , Vesículas Sinápticas , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Axones/metabolismo , Mesencéfalo/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(26): e2212910120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339198

RESUMEN

Social interactions such as the patient-clinician encounter can influence pain, but the underlying dynamic interbrain processes are unclear. Here, we investigated the dynamic brain processes supporting social modulation of pain by assessing simultaneous brain activity (fMRI hyperscanning) from chronic pain patients and clinicians during video-based live interaction. Patients received painful and nonpainful pressure stimuli either with a supportive clinician present (Dyadic) or in isolation (Solo). In half of the dyads, clinicians performed a clinical consultation and intake with the patient prior to hyperscanning (Clinical Interaction), which increased self-reported therapeutic alliance. For the other half, patient-clinician hyperscanning was completed without prior clinical interaction (No Interaction). Patients reported lower pain intensity in the Dyadic, relative to the Solo, condition. In Clinical Interaction dyads relative to No Interaction, patients evaluated their clinicians as better able to understand their pain, and clinicians were more accurate when estimating patients' pain levels. In Clinical Interaction dyads, compared to No Interaction, patients showed stronger activation of the dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC) and primary (S1) and secondary (S2) somatosensory areas (Dyadic-Solo contrast), and clinicians showed increased dynamic dlPFC concordance with patients' S2 activity during pain. Furthermore, the strength of S2-dlPFC concordance was positively correlated with self-reported therapeutic alliance. These findings support that empathy and supportive care can reduce pain intensity and shed light on the brain processes underpinning social modulation of pain in patient-clinician interactions. Our findings further suggest that clinicians' dlPFC concordance with patients' somatosensory processing during pain can be boosted by increasing therapeutic alliance.


Asunto(s)
Dolor Crónico , Empatía , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral , Imagen por Resonancia Magnética
17.
J Virol ; : e0013724, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136461

RESUMEN

Nucleoside-modified mRNA technology has revolutionized vaccine development with the success of mRNA COVID-19 vaccines. We used modified mRNA technology for the design of envelopes (Env) to induce HIV-1 broadly neutralizing antibodies (bnAbs). However, unlike SARS-CoV-2 neutralizing antibodies that are readily made, HIV-1 bnAb induction is disfavored by the immune system because of the rarity of bnAb B cell precursors and the cross-reactivity of bnAbs targeting certain Env epitopes with host molecules, thus requiring optimized immunogen design. The use of protein nanoparticles (NPs) has been reported to enhance B cell germinal center responses to HIV-1 Env. Here, we report our experience with the expression of Env-ferritin NPs compared with membrane-bound Env gp160 when encoded by modified mRNA. We found that well-folded Env-ferritin NPs were a minority of the protein expressed by an mRNA design and were immunogenic at 20 µg but minimally immunogenic in mice at 1 µg dose in vivo and were not expressed well in draining lymph nodes (LNs) following intramuscular immunization. In contrast, mRNA encoding gp160 was more immunogenic than mRNA encoding Env-NP at 1 µg dose and was expressed well in draining LN following intramuscular immunization. Thus, analysis of mRNA expression in vitro and immunogenicity at low doses in vivo are critical for the evaluation of mRNA designs for optimal immunogenicity of HIV-1 immunogens.IMPORTANCEAn effective HIV-1 vaccine that induces protective antibody responses remains elusive. We have used mRNA technology for designs of HIV-1 immunogens in the forms of membrane-bound full-length envelope gp160 and envelope ferritin nanoparticle. Here, we demonstrated in a mouse model that the membrane-bound form induced a better response than envelope ferritin nanoparticle because of higher in vivo protein expression. The significance of our research is in highlighting the importance of analysis of mRNA design expression and low-dose immunogenicity studies for HIV-1 immunogens before moving to vaccine clinical trials.

18.
Proc Natl Acad Sci U S A ; 119(20): e2118430119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533272

RESUMEN

The assembly of functional neuronal circuits requires appropriate numbers of distinct classes of neurons, but the mechanisms through which their relative proportions are established remain poorly defined. Investigating the mouse striatum, we found that the two most prominent subtypes of striatal interneurons, parvalbumin-expressing (PV+) GABAergic and cholinergic (ChAT+) interneurons, undergo extensive programmed cell death between the first and second postnatal weeks. Remarkably, the survival of PV+ and ChAT+ interneurons is regulated by distinct mechanisms mediated by their specific afferent connectivity. While long-range cortical inputs control PV+ interneuron survival, ChAT+ interneuron survival is regulated by local input from the medium spiny neurons. Our results identify input-specific circuit mechanisms that operate during the period of programmed cell death to establish the final number of interneurons in nascent striatal networks.


Asunto(s)
Cuerpo Estriado , Interneuronas , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Parvalbúminas
19.
BMC Bioinformatics ; 25(1): 82, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389044

RESUMEN

BACKGROUND: One of the stranger phenomena that can occur during gene translation is where, as a ribosome reads along the mRNA, various cellular and molecular properties contribute to stalling the ribosome on a slippery sequence and shifting the ribosome into one of the other two alternate reading frames. The alternate frame has different codons, so different amino acids are added to the peptide chain. More importantly, the original stop codon is no longer in-frame, so the ribosome can bypass the stop codon and continue to translate the codons past it. This produces a longer version of the protein, a fusion of the original in-frame amino acids, followed by all the alternate frame amino acids. There is currently no automated software to predict the occurrence of these programmed ribosomal frameshifts (PRF), and they are currently only identified by manual curation. RESULTS: Here we present PRFect, an innovative machine-learning method for the detection and prediction of PRFs in coding genes of various types. PRFect combines advanced machine learning techniques with the integration of multiple complex cellular properties, such as secondary structure, codon usage, ribosomal binding site interference, direction, and slippery site motif. Calculating and incorporating these diverse properties posed significant challenges, but through extensive research and development, we have achieved a user-friendly approach. The code for PRFect is freely available, open-source, and can be easily installed via a single command in the terminal. Our comprehensive evaluations on diverse organisms, including bacteria, archaea, and phages, demonstrate PRFect's strong performance, achieving high sensitivity, specificity, and an accuracy exceeding 90%. The code for PRFect is freely available and installs with a single terminal command. CONCLUSION: PRFect represents a significant advancement in the field of PRF detection and prediction, offering a powerful tool for researchers and scientists to unravel the intricacies of programmed ribosomal frameshifting in coding genes.


Asunto(s)
Sistema de Lectura Ribosómico , Biosíntesis de Proteínas , Codón de Terminación/genética , Genoma Viral , Aminoácidos
20.
J Biol Chem ; 299(5): 104646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965620

RESUMEN

The solute carrier 17 family transports diverse organic anions using two distinct modes of coupling to a source of energy. Transporters that package glutamate and nucleotide into secretory vesicles for regulated release by exocytosis are driven by membrane potential but subject to allosteric regulation by H+ and Cl-. Other solute carrier 17 members including the lysosomal sialic acid exporter couple the flux of organic anion to cotransport of H+. To begin to understand how similar proteins can perform such different functions, we have studied Escherichia coli DgoT, a H+/galactonate cotransporter. A recent structure of DgoT showed many residues contacting D-galactonate, and we now find that they do not tolerate even conservative substitutions. In contrast, the closely related lysosomal H+/sialic acid cotransporter Sialin tolerates similar mutations, consistent with its recognition of diverse substrates with relatively low affinity. We also find that despite coupling to H+, DgoT transports more rapidly but with lower apparent affinity at high pH. Indeed, membrane potential can drive uptake, indicating electrogenic transport and suggesting a H+:galactonate stoichiometry >1. Located in a polar pocket of the N-terminal helical bundle, Asp46 and Glu133 are each required for net flux by DgoT, but the E133Q mutant exhibits robust exchange activity and rescues exchange by D46N, suggesting that these two residues operate in series to translocate protons. E133Q also shifts the pH sensitivity of exchange by DgoT, supporting a central role for the highly conserved TM4 glutamate in H+ coupling by DgoT.


Asunto(s)
Proteínas de Escherichia coli , Protones , Simportadores , Aniones/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Simportadores/genética , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA