Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Methods ; 185: 110-119, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32006678

RESUMEN

This work demonstrates how computational and physical modelling of the positron emission tomography (PET) image acquisition process for a state-of-the-art integrated PET and magnetic resonance imaging (PET-MR) system can produce images comparable to the manufacturer. The GE SIGNA PET/MR scanner is manufactured by General Electric and has time-of-flight (TOF) capabilities of about 390 ps. All software development took place in the Software for Tomographic Image Reconstruction (STIR: http://stir.sf.net) library, which is a widely used open source software to reconstruct data as exported from emission tomography scanners. The new software developments will be integrated into STIR, providing the opportunity for researchers worldwide to establish and expand their image reconstruction methods. Furthermore, this work is of particular significance as it provides the first validation of TOF PET image reconstruction for real scanner datasets using the STIR library. This paper presents the methodology, analysis, and critical issues encountered in implementing an independent reconstruction software package. Acquired PET data were processed via several appropriate algorithms which are necessary to produce an accurate and precise quantitative image. This included mathematical, physical and anatomical modelling of the patient and simulation of various aspects of the acquisition. These included modelling of random coincidences using 'singles' rates per crystals, detector efficiencies and geometric effects. Attenuation effects were calculated by using the STIR's attenuation correction model. Modelling all these effects within the system matrix allowed the reconstruction of PET images which demonstrates the metabolic uptake of the administered radiopharmaceutical. These implementations were validated using measured phantom and clinical datasets. The developments are tested using the ordered subset expectation maximisation (OSEM) and the more recently proposed kernelised expectation maximisation (KEM) algorithm which incorporates anatomical information from MR images into PET reconstruction.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Programas Informáticos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos , Modelos Teóricos , Fibrosis Pulmonar/diagnóstico por imagen
2.
Neuroimage ; 222: 117229, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771619

RESUMEN

BACKGROUND: The lack of standardization of intensity normalization methods and its unknown effect on the quantification output is recognized as a major drawback for the harmonization of brain FDG-PET quantification protocols. The aim of this work is the ground truth-based evaluation of different intensity normalization methods on brain FDG-PET quantification output. METHODS: Realistic FDG-PET images were generated using Monte Carlo simulation from activity and attenuation maps directly derived from 25 healthy subjects (adding theoretical relative hypometabolisms on 6 regions of interest and for 5 hypometabolism levels). Single-subject statistical parametric mapping (SPM) was applied to compare each simulated FDG-PET image with a healthy database after intensity normalization based on reference regions methods such as the brain stem (RRBS), cerebellum (RRC) and the temporal lobe contralateral to the lesion (RRTL), and data-driven methods, such as proportional scaling (PS), histogram-based method (HN) and iterative versions of both methods (iPS and iHN). The performance of these methods was evaluated in terms of the recovery of the introduced theoretical hypometabolic pattern and the appearance of unspecific hypometabolic and hypermetabolic findings. RESULTS: Detected hypometabolic patterns had significantly lower volumes than the introduced hypometabolisms for all intensity normalization methods particularly for slighter reductions in metabolism . Among the intensity normalization methods, RRC and HN provided the largest recovered hypometabolic volumes, while the RRBS showed the smallest recovery. In general, data-driven methods overcame reference regions and among them, the iterative methods overcame the non-iterative ones. Unspecific hypermetabolic volumes were similar for all methods, with the exception of PS, where it became a major limitation (up to 250 cm3) for extended and intense hypometabolism. On the other hand, unspecific hypometabolism was similar far all methods, and usually solved with appropriate clustering. CONCLUSIONS: Our findings showed that the inappropriate use of intensity normalization methods can provide remarkable bias in the detected hypometabolism and it represents a serious concern in terms of false positives. Based on our findings, we recommend the use of histogram-based intensity normalization methods. Reference region methods performance was equivalent to data-driven methods only when the selected reference region is large and stable.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Anciano , Mapeo Encefálico/métodos , Simulación por Computador , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Lóbulo Temporal/patología
3.
Hell J Nucl Med ; 18(2): 140-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26187214

RESUMEN

OBJECTIVE: With the increasing number of patients undergoing positron emission tomography (PET) scans and the fact that multiple whole body acquisitions are performed during therapy monitoring, the reduction of scan time as well as of the injected radioactive dose are important issues. However, short scan time and reduction of the injected radiation dose result in low count statistics, which significantly affects the quality of the reconstructed images and accurate diagnosis. SUBJECTS AND METHODS: The aim of this study was to explore the effect of low count statistics on ordered subset expectation maximization regularized with median root prior (OS-MRP-OSL) reconstructed images. By optimizing OS-MRP-OSL we determine whether a satisfactory handling of the noise properties and bias can be achieved compared to post-filtered ordered subset expectation maximization (OSEM), which will lead to improved image quality in simulations with more noise. We used realistic simulated PET data of a thorax with lesions corresponding to tumors with different intensities. RESULTS: OS-MRP-OSL provided reduced noise from post-filtered OSEM, without having the negative effect of blurring. On the other hand, bias presented no significant difference. CONCLUSION: This work is relevant to future PET reconstruction of clinical images and PET-magnetic resonance investigations where the reduced injected dose will allow imaging a larger cohort of humans.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Simulación por Computador , Humanos , Funciones de Verosimilitud , Modelos Estadísticos , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad
4.
Phys Med Biol ; 69(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38271737

RESUMEN

Objective. Most methods for partial volume correction (PVC) of positron emission tomography (PET) data employ anatomical segmentation of images into regions of interest. This approach is not optimal for exploratory functional imaging beyond regional hypotheses. Here, we describe a novel method for unbiased voxel-wise PVC.Approach.B-spline basis functions were combined with geometric transfer matrices to enable a method (bsGTM) that provides PVC or alternatively provides smoothing with minimal regional crosstalk. The efficacy of the proposed method was evaluated using Monte Carlo simulations, human PET data, and murine functional PET data.Main results.In simulations, bsGTM provided recovery of partial volume signal loss comparable to iterative deconvolution, while demonstrating superior resilience to noise. In a real murine PET dataset, bsGTM yielded much higher sensitivity for detecting amphetamine-induced reduction of [11C]raclopride binding potential. In human PET data, bsGTM smoothing enabled increased signal-to-noise ratios with less degradation of binding potentials relative to Gaussian convolution or non-local means.Significance.bsGTM offers improved performance for PVC relative to iterative deconvolution, the current method of choice for voxel-wise PVC, especially in the common PET regime of low signal-to-noise ratio. The new method provides an anatomically unbiased way to compensate partial volume errors in cases where anatomical segmentation is unavailable or of questionable relevance or accuracy.


Asunto(s)
Algoritmos , Encéfalo , Humanos , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido , Racloprida , Procesamiento de Imagen Asistido por Computador/métodos
5.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 41-51, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37397180

RESUMEN

The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.1 × 15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100-µm thick plastic layers and 52% for 50 µm, the coincidence time resolution (CTR) distribution improved to 204 ± 49 and 220 ± 41 ps, respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On an NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast-to-noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.

6.
Phys Med Biol ; 67(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35358957

RESUMEN

Objective.Scattered events add bias in the reconstructed positron emission tomography (PET) images. Our objective is the accurate estimation of the scatter distribution, required for an effective scatter correction.Approach.In this paper, we propose a practical energy-based (EB) scatter estimation method that uses the marked difference between the energy distribution of the non-scattered and scattered events in the presence of randoms. In contrast to previous EB methods, we model the unscattered events using data obtained from measured point sources.Main results.We demonstrate feasibility using Monte Carlo simulated as well as experimental data acquired on the long axial field-of-view (FOV) PennPET EXPLORER scanner. Simulations show that the EB scatter estimated sinograms, for all phantoms, are in excellent agreement with the ground truth scatter distribution, known from the simulated data. Using the standard NEMA image quality (IQ) phantom we find that both the EB and single scatter simulation (SSS) provide good contrast recovery values. However, the EB correction gives better lung residuals.Significance.Application of the EB method on measured data showed, that the proposed method can be successfully translated to real-world PET scanners. When applied to a 20 cm diameter ×20 cm long cylindrical phantom the EB and SSS algorithms demonstrated very similar performance. However, on a larger 35 cm × 30 cm long cylinder the EB can better account for increased multiple scattering and out-of-FOV activity, providing more uniform images with 12%-36% reduced background variability. In typical PET ring sizes, the EB estimation can be performed in a matter of a few seconds compared to the several minutes needed for SSS, leading to efficiency advantages over the SSS implementation. as well.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Método de Montecarlo , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Dispersión de Radiación
7.
Med Phys ; 48(5): 2482-2493, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33713354

RESUMEN

PURPOSE: SimPET (www.sim-pet.org) is a free cloud-based platform for the generation of realistic brain positron emission tomography (PET) data. In this work, we introduce the key features of the platform. In addition, we validate the platform by performing a comparison between simulated healthy brain FDG-PET images and real healthy subject data for three commercial scanners (GE Advance NXi, GE Discovery ST, and Siemens Biograph mCT). METHODS: The platform provides a graphical user interface to a set of automatic scripts taking care of the code execution for the phantom generation, simulation (SimSET), and tomographic image reconstruction (STIR). We characterize the performance using activity and attenuation maps derived from PET/CT and MRI data of 25 healthy subjects acquired with a GE Discovery ST. We then use the created maps to generate synthetic data for the GE Discovery ST, the GE Advance NXi, and the Siemens Biograph mCT. The validation was carried out by evaluating Bland-Altman differences between real and simulated images for each scanner. In addition, SPM voxel-wise comparison was performed to highlight regional differences. Examples for amyloid PET and for the generation of ground-truth pathological patients are included. RESULTS: The platform can be efficiently used for generating realistic simulated FDG-PET images in a reasonable amount of time. The validation showed small differences between SimPET and acquired FDG-PET images, with errors below 10% for 98.09% (GE Discovery ST), 95.09% (GE Advance NXi), and 91.35% (Siemens Biograph mCT) of the voxels. Nevertheless, our SPM analysis showed significant regional differences between the simulated images and real healthy patients, and thus, the use of the platform for converting control subject databases between different scanners requires further investigation. CONCLUSIONS: The presented platform can potentially allow scientists in clinical and research settings to perform MC simulation experiments without the need for high-end hardware or advanced computing knowledge and in a reasonable amount of time.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Tomografía de Emisión de Positrones
8.
PET Clin ; 15(4): 453-461, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32739048

RESUMEN

Presented and discussed are challenges that had to be addressed for generation of the first long axial field-of-view (LAFOV) PET static and dynamic images. A brief comparison between the two main "schools of thought" behind the development of the only two implemented scanners at the time of writing is given. Although both aim to achieve the best possible quantitative static PET images and high-quality dynamic time-activity curves, their methods are different and reflect their history and future. As the benefits of the LAFOV are appealing to many, some popular strategies for cost management are briefly presented.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Humanos
9.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 703-711, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34541434

RESUMEN

Today Time-of-Flight (TOF), in PET scanners, assumes a single, well-defined timing resolution for all events. However, recent BGO-Cherenkov detectors, combining prompt Cherenkov emission and the typical BGO scintillation, can sort events into multiple timing kernels, best described by the Gaussian mixture models. The number of Cherenkov photons detected per event impacts directly the detector time resolution and signal rise time, which can later be used to improve the coincidence timing resolution. This work presents a simulation toolkit which applies multiple timing spreads on the coincident events and an image reconstruction that incorporates this information. A full cylindrical BGO-Cherenkov PET model was compared, in terms of contrast recovery and contrast-to-noise ratio, against an LYSO model with a time resolution of 213 ps. Two reconstruction approaches for the mixture kernels were tested: 1) mixture Gaussian and 2) decomposed simple Gaussian kernels. The decomposed model used the exact mixture component applied during the simulation. Images reconstructed using mixture kernels provided similar mean value and less noise than the decomposed. However, typically, more iterations were needed. Similarly, the LYSO model, with a single TOF kernel, converged faster than the BGO-Cherenkov with multiple kernels. The results indicate that the model complexity slows down convergence. However, due to the higher sensitivity, the contrast-to-noise ratio was 26.4% better for the BGO model.

10.
EJNMMI Phys ; 7(1): 42, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32562010

RESUMEN

INTRODUCTION: Time-of-flight (TOF) positron emission tomography (PET) scanners can provide significant benefits by improving the noise properties of reconstructed images. In order to achieve this, the timing response of the scanner needs to be modelled as part of the reconstruction process. This is currently achieved using Gaussian TOF kernels. However, the timing measurements do not necessarily follow a Gaussian distribution. In ultra-fast timing resolutions, the depth of interaction of the γ-photon and the photon travel spread (PTS) in the crystal volume become increasingly significant factors for the timing performance. The PTS of a single photon can be approximated better by a truncated exponential distribution. Therefore, we computed the corresponding TOF kernel as a modified Laplace distribution for long crystals. The obtained (CTR) kernels could be more appropriate to model the joint probability of the two in-coincidenceγ-photons. In this paper, we investigate the impact of using a CTR kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data. MATERIALS AND METHODS: The geometry and physics of a PET scanner with two timing configurations, (a) idealised timing resolution, in which only the PTS contributed in the CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the role of the crystal thickness, different crystal lengths were considered. The evaluation took place in terms of Kullback-Leibler (K-L) distance between the proposed model and the simulated timing response, contrast recovery (CRC) and spatial resolution. The reconstructions were performed using STIR image reconstruction toolbox. RESULTS: Results for the idealised scanner showed that the CTR kernel was in excellent agreement with the simulated time differences. In terms of K-L distance outperformed the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast configurations, a convolution kernel between the CTR and a Gaussian showed the best agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the CTR kernel demonstrated improvements, with values that ranged up to 3.8% better CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not observed. In addition, we showed that edge artefacts can appear in the reconstructed images when the timing kernel used for the reconstruction is not carefully optimised. Further iterations, can help improve the edge artefacts.

11.
Front Physiol ; 11: 525575, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041852

RESUMEN

NEMA characterization of PET systems is generally based on 18F because it is the most relevant radioisotope for the clinical use of PET. 18F has a half-life of 109.7 min and decays into stable 18O via ß+ emission with a probability of over 96% and a maximum positron energy of 0.633 MeV. Other commercially available PET radioisotopes, such as 82Rb and 68Ga have more complex decay schemes with a variety of prompt gammas, which can directly fall into the energy window and induce false coincidence detections by the PET scanner. METHODS: Aim of this work was three-fold: (A) Develop a GATE model of the GE Signa PET/MR to perform realistic and relevant Monte Carlo simulations (B) Validate this model with published sensitivity and Noise Equivalent Count Rate (NECR) data for 18F and 68Ga (C) Use the validated GATE-model to predict the system performance for other PET isotopes including 11C, 15O, 13N, 82Rb, and 68Ga and to evaluate the effect of a 3T magnetic field on the positron range. RESULTS: Simulated sensitivity and NECR tests performed with the GATE-model for different radioisotopes were in line with literature values. Simulated sensitivities for 18F and 68Ga were 21.2 and 19.0/kBq, respectively, for the center position and 21.1 and 19.0 cps/kBq, respectively, for the 10 cm off-center position compared to the corresponding measured values of 21.8 and 20.0 cps/kBq for the center position and 21.1 and 19.6 cps/kBq for the 10 cm off-center position. In terms of NECR, the simulated peak NECR was 216.8 kcps at 17.40 kBq/ml for 18F and 207.1 kcps at 20.10 kBq/ml for 68Ga compared to the measured peak NECR of 216.8 kcps at 18.60 kBq/ml and 205.6 kcps at 20.40 kBq/ml for18F and 68Ga, respectively. For 11C, 13N, and 15O, results confirmed a peak NECR similar to 18F with the effective activity concentration scaled by the inverse of the positron fraction. For 82Rb, and 68Ga, the peak NECR was lower than for 18F while the corresponding activity concentrations were higher. For the higher energy positron emitters, the positron range was confirmed to be tissue-dependent with a reduction of the positron range by a factor of 3 to 4 in the plane perpendicular to the magnetic field and an increased positron range along the direction of the magnetic field. CONCLUSION: Monte-Carlo simulations were used to predict sensitivity and NECR performance of GE Signa PET/MR for 18F, 15O, 13N, 11C, 82Rb, and 68Ga radioisotopes and were in line with literature data. Simulations confirmed that sensitivity and NECR were influenced by the particular decay scheme of each isotope. As expected, the positron range decreased in the direction perpendicular to the 3T magnetic field. However, this will be only partially improving the resolution properties of a clinical PET/MR system due to the limiting spatial resolution of the PET detector.

12.
Phys Med Biol ; 64(3): 035004, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30566915

RESUMEN

In this paper, we describe the implementation of support for time-of-flight (TOF) positron emission tomography (PET) for both listmode and sinogram data in the open source software for tomographic image reconstruction (STIR). We provide validation and performance characterization using simulated data from the open source GATE Monte Carlo toolbox, with TOF configurations spanning from 81.2 to 209.6 ps. The coincidence detector resolution was corrected for the timing resolution deterioration due to the contribution of the crystal length. Comparison between the reconstruction of listmode and sinogram data demonstrated good agreement in both TOF and non-TOF cases in terms of relative absolute error. To reduce the reconstruction time, we assessed the truncation of the TOF kernel along lines-of-response (LOR). Rejection of LOR elements beyond four times the TOF standard deviation provides significant acceleration of [Formula: see text] [Formula: see text] without compromising the image quality. Further narrowing of the kernel can provide extra time reduction but with the gradual introduction of error in the reconstructed images. As expected, TOF reconstruction performs better than non-TOF in terms of both contrast-recovery-coefficient (CRC) and signal-to-noise ratio (SNR). CRC achieves convergence faster with TOF, at lower noise levels. SNR with TOF was superior for early iterations, but with quick deterioration. Higher timing resolution further improved reconstruction performance, while TOF bin mashing was shown to have only a small impact on reconstructed images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones , Programas Informáticos , Algoritmos , Humanos , Método de Montecarlo , Relación Señal-Ruido
13.
IEEE Trans Radiat Plasma Med Sci ; 3(4): 400-409, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33134651

RESUMEN

Anatomically-driven image reconstruction algorithms have become very popular in positron emission tomography (PET) where they have demonstrated improved image resolution and quantification. This work, consider the effect of spatial inconsistency between MR and PET images in hot and cold regions of the PET image. We investigate these effects on the kernel method from machine learning, in particular, the hybrid kernelized expectation maximization (HKEM). These were applied to Jaszczak phantom and patient data acquired with the Biograph Siemens mMR. The results show that even a small shift can cause a significant change in activity concentration. In general, the PET-MR inconsistencies can induce the partial volume effect, more specifically the 'spill-in' of the affected cold regions and the 'spill-out' from the hot regions. The maximum change was about 100% for the cold region and 10% for the hot lesion using KEM, against the 37% and 8% obtained with HKEM. The findings of this work suggest that including PET information in the kernel enhances the flexibility of the reconstruction in case of spatial inconsistency. Nevertheless, accurate registration and choice of the appropriate MR image for the creation of the kernel is essential to avoid artifacts, blurring, and bias.

14.
EJNMMI Phys ; 6(1): 27, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31858289

RESUMEN

BACKGROUND: We aim to provide a systematic study of the impact of white matter (WM) spill-in on the calculation of standardized uptake value ratios (SUVRs) on Aß-negative subjects, and we study the effect of including WM in the reference region as a compensation. In addition, different partial volume correction (PVC) methods are applied and evaluated. METHODS: We evaluated magnetic resonance imaging and 18F-AV-45 positron emission tomography data from 122 cognitively normal (CN) patients recruited at the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cortex SUVRs were obtained by using the cerebellar grey matter (CGM) (SUVRCGM) and the whole cerebellum (SUVRWC) as reference regions. The correlations between the different SUVRs and the WM uptake (WM-SUVRCGM) were studied in patients, and in a well-controlled framework based on Monte Carlo (MC) simulation. Activity maps for the MC simulation were derived from ADNI patients by using a voxel-wise iterative process (BrainViset). Ten WM uptakes covering the spectrum of WM values obtained from patient data were simulated for different patients. Three different PVC methods were tested (a) the regional voxel-based (RBV), (b) the iterative Yang (iY), and (c) a simplified analytical correction derived from our MC simulation. RESULTS: WM-SUVRCGM followed a normal distribution with an average of 1.79 and a standard deviation of 0.243 (13.6%). SUVRCGM was linearly correlated to WM-SUVRCGM (r = 0.82, linear fit slope = 0.28). SUVRWC was linearly correlated to WM-SUVRCGM (r = 0.64, linear fit slope = 0.13). Our MC results showed that these correlations are compatible with those produced by isolated spill-in effect (slopes of 0.23 and 0.11). The impact of the spill-in was mitigated by using PVC for SUVRCGM (slopes of 0.06 and 0.07 for iY and RBV), while SUVRWC showed a negative correlation with SUVRCGM after PVC. The proposed analytical correction also reduced the observed correlations when applied to patient data (r = 0.27 for SUVRCGM, r = 0.18 for SUVRWC). CONCLUSIONS: There is a high correlation between WM uptake and the measured SUVR due to spill-in effect, and that this effect is reduced when including WM in the reference region. We also evaluated the performance of PVC, and we proposed an analytical correction that can be applied to preprocessed data.

16.
Med Phys ; 40(11): 112505, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24320464

RESUMEN

PURPOSE: In this work, the authors aim for the estimation of the effect of (176)Lu intrinsic radioactivity on the performance of a dual head PET system dedicated to small animal imaging. METHODS: A prototype camera has been used as a reference system in order to validate two GATE simulation models, which were used for the investigation. The first model includes the (176)Lu intrinsic radioactivity, while the second does not. The two models have been designed in order to provide similar sensitivities, in terms of count rate performance and scatter fraction, in the linear range of activities. In addition, the model with the (176)Lu intrinsic radioactivity, has been validated in terms of background count rate. Different acquisition schemes have been examined in order to determine the optimum conditions to minimize the (176)Lu effects, while maintaining a high trues count rate. In addition, the effect on the image quality, in terms of spatial resolution, signal-to-noise ratio, and minimum detectable activity, was investigated. RESULTS: Both models are in good agreement with the measured data. While, the presence of the (176)Lu altered the dead time of the model, it also affected the singles, trues, and randoms count rates. The noise equivalent count rate curves of the two models indicate that for low activities, the lack of (176)Lu radioactivity leads to better noise properties due to the underestimation of the randoms. Signal-to-noise ratio measurement on coincidence images confirm the aforementioned claim, since the model without the (176)Lu provides better less noisy images. Furthermore, the spatial resolution and the minimum detectable activity are overestimated. CONCLUSIONS: It has been proven that the lack of the (176)Lu intrinsic radioactivity has an impact on the design of the simulation model's dead time. Even if there is an alignment with experimental results still the noise properties, for a wide range of activities, are overestimated. In addition, for low activities, better image quality, is presented, mainly due to the lack of the (176)Lu photons which blur the images. Furthermore, it was shown that the use of a high hardware threshold allows the application of a wide energy window, which improves the statistics without a significant compromise on the quality of the detected photons, mainly, due to the early rejection of the low energy photons and the low scatter factor.


Asunto(s)
Lutecio/química , Tomografía de Emisión de Positrones/instrumentación , Radioisótopos/química , Algoritmos , Animales , Simulación por Computador , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Ratones , Ratas , Valores de Referencia , Reproducibilidad de los Resultados , Dispersión de Radiación , Relación Señal-Ruido , Programas Informáticos
17.
Med Phys ; 40(11): 112506, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24320465

RESUMEN

PURPOSE: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties. METHODS: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with heterogeneous activity distribution for visual assessment. RESULTS: The accuracy of the simulated database was assessed against the original clinical images. The PVC simulated images matched the clinical ones best. Local, regional, and global features extracted from the PVC simulated images were closest to the clinical measurements, with the exception of the size zone variability and the mean intensity values, where heterogeneous tumors showed better reproducibility. The profiles on PVC simulated tumors after postfiltering seemed to represent the more realistic heterogeneous regions with respect to the clinical reference. CONCLUSIONS: In this study, the authors investigated the input activity map heterogeneity in the GATE simulations of tumors with heterogeneous activity distribution. The most realistic heterogeneous tumors were obtained by inserting PVC activity distributions from the clinical image into the activity map of the simulation. Partial volume effect (PVE) can play a crucial role in the quantification of heterogeneity within tumors and have an important impact on applications such as patient follow-up during treatment and assessment of tumor response to therapy. The development of such a database incorporating patient anatomical and functional variability can be used to evaluate new image processing or analysis algorithms, while providing control of the ground truth, which is not available when dealing with clinical datasets. The database includes all images used and generated in this study, as well as the sinograms and the attenuation phantoms for further investigation. It is freely available to the interested reader of the journal at http://www.med.upatras.gr/oncobase/.


Asunto(s)
Bases de Datos Factuales , Oncología Médica/normas , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Algoritmos , Antropometría , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Neoplasias/diagnóstico , Distribución Normal , Reproducibilidad de los Resultados , Distribución Tisular , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA