Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Phys Rev Lett ; 128(15): 155501, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499876

RESUMEN

The origin of limited plasticity in metallic glasses is elusive, with no apparent link to their atomic structure. We propose that the response of the glassy structure to applied stress, not the original structure itself, provides a gauge to predict the degree of plasticity. We carried out high-energy x-ray diffraction on various bulk metallic glasses (BMGs) under uniaxial compression within the elastic limit and evaluated the anisotropic pair distribution function. We show that the extent of local deviation from the affine (uniform) deformation in the elastic regime is strongly correlated with the plastic behavior of BMGs beyond yield, across chemical compositions and sample history. The results suggest that the propensity for collective local atomic rearrangements under stress promotes plasticity.

2.
J Chem Phys ; 153(18): 180902, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187433

RESUMEN

In liquids, the timescales for structure, diffusion, and phonon are all similar, of the order of a pico-second. This not only makes characterization of liquid dynamics difficult but also renders it highly questionable to describe liquids in these terms. In particular, the current definition of the structure of liquids by the instantaneous structure may need to be expanded because the liquid structure is inherently dynamic. Here, we advocate describing the liquid structure through the distinct-part of the Van Hove function, which can be determined by inelastic neutron and x-ray scattering measurements as well as by simulation. It depicts the dynamic correlation between atoms in space and time, starting with the instantaneous correlation function at t = 0. The observed Van Hove functions show that the atomic dynamics is strongly correlated in some liquids, such as water. The effect of atomic correlation on various transport properties of fluid, including viscosity and diffusivity, is discussed.

3.
Phys Rev Lett ; 123(19): 196603, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765189

RESUMEN

We propose mechanisms for the spin Hall effect in metallic systems arising from the coupling between conduction electrons and local magnetic moments that are dynamically fluctuating. Both a side-jump-type mechanism and a skew-scattering-type mechanism are considered. In either case, dynamical spin fluctuation gives rise to a nontrivial temperature dependence in the spin Hall conductivity. This leads to the enhancement in the spin Hall conductivity at nonzero temperatures near the ferromagnetic instability. The proposed mechanisms could be observed in 4d or 5d metallic compounds.

4.
Phys Rev Lett ; 120(13): 135502, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694207

RESUMEN

The de Gennes narrowing phenomenon is frequently observed by neutron or x-ray scattering measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and polymers. The characteristic slowing down of dynamics in the vicinity of the maximum of the total scattering intensity is commonly attributed to enhanced cooperativity. In this Letter, we present an alternative view on its origin through the examination of the time-dependent pair correlation function, the van Hove correlation function, for a model liquid in two, three, and four dimensions. We find that the relaxation time increases monotonically with distance and the dependence on distance varies with dimension. We propose a heuristic explanation of this dependence based on a simple geometrical model. This finding sheds new light on the interpretation of the de Gennes narrowing phenomenon and the α-relaxation time.

5.
Phys Chem Chem Phys ; 21(1): 38-45, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30283930

RESUMEN

The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a wide range of rheological behavior, which should be closely related to the microscopic structure of the systems. With in situ small-angle neutron scattering complemented by rheological measurements, we investigated the deformation behavior of a charge-stabilized colloidal glass at particle level undergoing steady shear. A short-lived, localized elastic response at particle level, termed as the transient elasticity zone (TEZ), was identified from the neutron spectra. The existence of the TEZ, which could be promoted by the electrostatic interparticle potential, is a signature of deformation heterogeneity: the body of fluids under shear behaves like an elastic solid within the spatial range of the TEZ but like fluid outside the TEZ. The size of the TEZ shrinks as the shear rate increases in the shear thinning region, which shows that the shear thinning is accompanied by a diminishing deformation heterogeneity. More interestingly, the TEZ is found to be the structural unit that provides the resistance to the imposed shear, as evidenced by the quantitative agreement between the local elastic stress sustained by the TEZ and the macroscopic stress from rheological measurements at low and moderate shear rates. Our findings provide an understanding on the nonlinear rheology of interacting colloidal glasses from a micro-mechanical view.

6.
Phys Chem Chem Phys ; 19(38): 25859-25869, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28758664

RESUMEN

In liquids, the ability of neighboring molecules to rearrange and jostle past each other is directly related to viscosity, the property which describes the propensity to flow. The presence of hydrogen bonds (H-bonds) complicates the molecular scale picture of viscosity. H-Bonds are attractive, directional interactions between molecules which, in some cases, result in transient network structures. In this work, we use experimental and computational methods to demonstrate that the timescale of H-bond network reorganization is the dominant dynamical timescale associated with viscosity for the case of the model H-bonding liquid n-methylacetamide (NMA). This molecule is a peptide analog which forms a transient linear H-bond network. Individual H-bond lifetimes and dynamical fluctuations were observed on the timescale of 1.5 ps, while collective motions and the longest lived population of H-bond partner lifetimes were observed on the order of 20 ps, in agreement with the Maxwell relaxation time. This identifies a mechanism which may aid in understanding the emergence of various complex phenomena arising from transient molecular structures, with implications ranging from the internal dynamics of proteins, to the glass transition, to better understanding the origins of the unique properties of H-bonding liquids.

7.
Phys Rev Lett ; 117(20): 205701, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886481

RESUMEN

We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).

8.
J Am Chem Soc ; 137(50): 15772-80, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26415030

RESUMEN

The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of ∼13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.


Asunto(s)
Microdominios de Membrana , Nanoestructuras
9.
Phys Rev Lett ; 115(4): 045501, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26252694

RESUMEN

Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. The origin of the cascade process in the fast quenched system is attributed to the higher density of local minima on the underlying potential energy landscape.

10.
Nano Lett ; 13(12): 5837-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205817

RESUMEN

The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs that are induced by changes in the FE polarization direction. Here, we show that in practice the junction current ratios between the two polarization states can be further enhanced by the electrostatic modification in the correlated electron oxide electrodes, and that FTJs with nanometer thin layers can effectively produce a considerably large electroresistance ratio at room temperature. To understand these surprising results, we employed an additional control parameter, which is related to the crossing of electronic and magnetic phase boundaries of the correlated electron oxide. The FE-induced phase modulation at the heterointerface ultimately results in an enhanced electroresistance effect. Our study highlights that the strong coupling between degrees of freedom across heterointerfaces could yield versatile and novel applications in oxide electronics.


Asunto(s)
Conductividad Eléctrica , Hierro/química , Óxidos/química , Electrones , Nanoestructuras/química , Transición de Fase
11.
Nat Commun ; 15(1): 1358, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355602

RESUMEN

In the absence of periodicity, the structure of glass is ill-defined, and a large number of structural states are found at similar energy levels. However, little is known about how these states are connected to each other in the potential energy landscape. We simulate mechanical relaxation by molecular dynamics for a prototypical [Formula: see text] metallic glass and follow the mechanical energy loss of each atom to track the change in the state. We find that the energy barriers separating these states are remarkably low, only of the order of 1 meV, implying that even quantum fluctuations can overcome these potential energy barriers. Our observation of numerous small ripples in the bottom of the potential energy landscape puts many assumptions regarding the thermodynamic states of metallic glasses into question and suggests that metallic glasses are not totally frozen at the local atomic level.

12.
J Phys Chem B ; 128(6): 1544-1549, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306707

RESUMEN

Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.

13.
Phys Rev E ; 109(6-1): 064608, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020980

RESUMEN

We report on the self-part of the Van Hove correlation function, the correlation function describing the dynamics of a single molecule, of water and deuterated water. The correlation function is determined by transforming inelastic scattering spectra of neutrons or x rays over a wide range of momentum transfer Q and energy transfer E to space R and time t. The short-range diffusivity is estimated from the Van Hove correlation function in the framework of the Gaussian approximation. The diffusivity has been found to be different from the long-range macroscopic diffusivity, providing information about local atomic dynamics.

14.
ACS Macro Lett ; 13(6): 720-725, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38804976

RESUMEN

The Rouse dynamics of polymer chains in model nanocomposite polyethylene oxide/silica nanoparticles (NPs) was investigated using quasielastic neutron scattering. The apparent Rouse rate of the polymer chains decreases as the particle loading increases. However, there is no evidence of an immobile segment population on the probed time scale of tens of ps. The slowing down of the dynamics is interpreted in terms of modified Rouse models for the chains in the NP interphase region. Thus, two chain populations, one bulk-like and the other characterized by a suppression of Rouse modes, are identified. The spatial extent of the interphase region is estimated to be about twice the adsorbed layer thickness, or ≈2 nm. These findings provide a detailed description of the suppression of the chain dynamics on the surface of NPs. These results are relevant insights on surface effects and confinement and provide a foundation for the understanding of the rheological properties of polymer nanocomposites with well-dispersed NPs.

15.
J Am Chem Soc ; 135(13): 5111-7, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23480729

RESUMEN

Atomistic molecular dynamics (MD) simulations were carried out to investigate the local dynamics of polyelectrolyte dendrimers dissolved in deuterium oxide (D2O) and its dependence on molecular charge. Enhanced segmental dynamics upon increase in molecular charge is observed, consistent with quasielastic neutron scattering (QENS) measurements. A strong coupling between the intradendrimer local hydration level and segmental dynamics is also revealed. Compelling evidence shows these findings originate from the electrostatic interaction between the hydrocarbon components of a dendrimer and the invasive water. This combined study provides fundamental insight into the dynamics of charged polyelectrolytes and the solvating water molecules.

16.
Phys Rev Lett ; 111(20): 207002, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289703

RESUMEN

We use inelastic neutron scattering to show that superconductivity in electron-underdoped NaFe0.985Co0.015As induces a dispersive sharp resonance near E(r1)=3.25 meV and a broad dispersionless mode at E(r2)=6 meV. However, similar measurements on overdoped superconducting NaFe0.935Co0.045As find only a single sharp resonance at E(r)=7 meV. We connect these results with the observations of angle-resolved photoemission spectroscopy that the superconducting gaps in the electron Fermi pockets are anisotropic in the underdoped material but become isotropic in the overdoped case. Our analysis indicates that both the double neutron spin resonances and gap anisotropy originate from the orbital dependence of the superconducting pairing in the iron pnictides. Our discovery also shows the importance of the inelastic neutron scattering in detecting the multiorbital superconducting gap structures of iron pnictides.

17.
J Phys Condens Matter ; 35(17)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36812595

RESUMEN

The structure beyond the nearest neighbor atoms in liquid and glass is characterized by the medium-range order (MRO). In the conventional approach, the MRO is considered to result directly from the short-range order (SRO) in the nearest neighbors. To this bottom-up approach starting with the SRO, we propose to add a top-down approach in which global collective forces drive liquid to form density waves. The two approaches are in conflict with each other, and the compromise produces the structure with the MRO. The driving force to produce density waves provides the stability and stiffness to the MRO, and controls various mechanical properties. This dual framework provides a novel perspective for description of the structure and dynamics of liquid and glass.

18.
Phys Rev E ; 108(1-1): 014601, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583138

RESUMEN

Developing microscopic understanding of the thermal properties of liquids is challenging due to their strong dynamic disorder, which prevents characterization of the atomic degrees of freedom. There have been significant research interests in the past few decades to extend the normal mode analysis for solids to instantaneous structures of liquids. However, the nature of normal modes that arise from these unstable structures is still elusive. In this paper, we explore the instantaneous eigenmodes of dynamical matrices of various Lennard-Jones argon liquid and gas systems at high temperatures and show that the normal modes can be interpreted as an interpolation of T→∞ (gas) and T=0 (solid) mode descriptions. We find that normal modes become increasingly collisional and translational, recovering atomistic gaslike behavior rather than vibrational with increase in temperature, suggesting that normal modes in liquids may be described by both solidlike and gaslike modes.

19.
Sci Rep ; 13(1): 15979, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749128

RESUMEN

It is known that deformation in disordered materials such as metallic glasses and supercooled liquids occurs via the cooperative rearrangement of atoms or constituent particles at dynamical heterogeneities, commonly regarded as point-like defects. We show via molecular-dynamics simulations that there is no apparent relationship between atomic rearrangements and the local atomic environment as measured by the atomic-level stresses, kinetic and potential energies, and the per-atom Voronoi volume. In addition, there is only a weak correlation between atomic rearrangements and the largest and smallest eigenvalues of the dynamical matrix. Our results confirm the transient nature of dynamical heterogeneities and suggest that the notion of defects may be less relevant than that of a propensity for rearrangement.

20.
Membranes (Basel) ; 13(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37103869

RESUMEN

Lipid bilayers are supramolecular structures responsible for a range of processes, such as transmembrane transport of ions and solutes, and sorting and replication of genetic materials, to name just a few. Some of these processes are transient and currently, cannot be visualized in real space and time. Here, we developed an approach using 1D, 2D, and 3D Van Hove correlation functions to image collective headgroup dipole motions in zwitterionic phospholipid bilayers. We show that both 2D and 3D spatiotemporal images of headgroup dipoles are consistent with commonly understood dynamic features of fluids. However, analysis of the 1D Van Hove function reveals lateral transient and re-emergent collective dynamics of the headgroup dipoles-occurring at picosecond time scales-that transmit and dissipate heat at longer times, due to relaxation processes. At the same time, the headgroup dipoles also generate membrane surface undulations due a collective tilting of the headgroup dipoles. A continuous intensity band of headgroup dipole spatiotemporal correlations-at nanometer length and nanosecond time scales-indicates that dipoles undergo stretching and squeezing elastic deformations. Importantly, the above mentioned intrinsic headgroup dipole motions can be externally stimulated at GHz-frequency scale, enhancing their flexoelectric and piezoelectric capabilities (i.e., increased conversion efficiency of mechanical energy into electric energy). In conclusion, we discuss how lipid membranes can provide molecular-level insights about biological learning and memory, and as platforms for the development of the next generation of neuromorphic computers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA