Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37643006

RESUMEN

Distinct cytomegaloviruses (CMVs) are widely distributed across their mammalian hosts in a highly host species-restricted pattern. To date, evidence demonstrating this has been limited largely to PCR-based approaches targeting small, conserved genomic regions, and only a few complete genomes of isolated viruses representing distinct CMV species have been sequenced. We have now combined direct isolation of infectious viruses from tissues with complete genome sequencing to provide a view of CMV diversity in a wild animal population. We targeted Natal multimammate mice (Mastomys natalensis), which are common in sub-Saharan Africa, are known to carry a variety of zoonotic pathogens, and are regarded as the primary source of Lassa virus (LASV) spillover into humans. Using transformed epithelial cells prepared from M. natalensis kidneys, we isolated CMVs from the salivary gland tissue of 14 of 37 (36 %) animals from a field study site in Mali. Genome sequencing showed that these primary isolates represent three different M. natalensis CMVs (MnatCMVs: MnatCMV1, MnatCMV2 and MnatCMV3), with some animals carrying multiple MnatCMVs or multiple strains of a single MnatCMV presumably as a result of coinfection or superinfection. Including primary isolates and plaque-purified isolates, we sequenced and annotated the genomes of two MnatCMV1 strains (derived from sequencing 14 viruses), six MnatCMV2 strains (25 viruses) and ten MnatCMV3 strains (21 viruses), totalling 18 MnatCMV strains isolated as 60 infectious viruses. Phylogenetic analysis showed that these MnatCMVs group with other murid viruses in the genus Muromegalovirus (subfamily Betaherpesvirinae, family Orthoherpesviridae), and that MnatCMV1 and MnatCMV2 are more closely related to each other than to MnatCMV3. The availability of MnatCMV isolates and the characterization of their genomes will serve as the prelude to the generation of a MnatCMV-based vaccine to target LASV in the M. natalensis reservoir.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Animales , Humanos , Ratones , Filogenia , Secuencia de Bases , Murinae
2.
Virol J ; 17(1): 54, 2020 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32306957

RESUMEN

BACKGROUND: Merkel cell polyomavirus (MCPyV) is a human polyomavirus that establishes a life-long harmless infection in most individuals, with dermal fibroblasts believed to be the natural host cell. However, this virus is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. Several MCPyV variants with polymorphism in their promoter region have been isolated, but it is not known whether these differences affect the biological properties of the virus. METHODS: Using transient transfection studies in human dermal fibroblasts and the MCC cell line MCC13, we compared the transcription activity of the early and late promoters of the most commonly described non-coding control region MCPyV variant and six other isolates containing specific mutation patterns. RESULTS: Both the early and late promoters were significantly stronger in human dermal fibroblasts compared with MCC13 cells, and a different promoter strength between the MCPyV variants was observed. The expression of full-length large T-antigen, a viral protein that regulates early and late promoter activity, inhibited early and late promoter activities in both cell lines. Nonetheless, a truncated large T-antigen, which is expressed in virus-positive MCCs, stimulated the activity of its cognate promoter. CONCLUSION: The promoter activities of all MCPyV variants tested was stronger in human dermal fibroblasts, a cell line that supports viral replication, than in MCC13 cells, which are not permissive for MCPyV. Truncated large T-antigen, but not full-length large T-antigen stimulated viral promoter activity. Whether, the difference in promoter strength and regulation by large T-antigen may affect the replication and tumorigenic properties of the virus remains to be determined.


Asunto(s)
Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/virología , Fibroblastos/virología , Poliomavirus de Células de Merkel/genética , Regiones Promotoras Genéticas , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Variación Genética , Humanos , Transcripción Genética , Transfección , Replicación Viral
3.
Virol J ; 17(1): 42, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220234

RESUMEN

BACKGROUND: Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS: Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS: In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS: This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.


Asunto(s)
Bornaviridae/clasificación , Herpesviridae/clasificación , Filogenia , Poliomavirus/clasificación , Sciuridae/virología , Animales , Bornaviridae/aislamiento & purificación , Genoma Viral , Herpesviridae/aislamiento & purificación , Poliomavirus/aislamiento & purificación , Sciuridae/clasificación , Análisis de Secuencia de ADN
4.
Arch Virol ; 165(10): 2291-2299, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32754877

RESUMEN

The multimammate mouse (Mastomys natalensis; M. natalensis) serves as the main reservoir for the zoonotic arenavirus Lassa virus (LASV), and this has led to considerable investigation into the distribution of LASV and other related arenaviruses in this host species. In contrast to the situation with arenaviruses, the presence of other viruses in M. natalensis remains largely unexplored. In this study, herpesviruses and polyomaviruses were identified and partially characterized by PCR methods, sequencing, and phylogenetic analysis. In tissues sampled from M. natalensis populations in Côte d'Ivoire and Mali, six new DNA viruses (four betaherpesviruses, one gammaherpesvirus and one polyomavirus) were identified. Phylogenetic analysis based on glycoprotein B amino acid sequences showed that the herpesviruses clustered with cytomegaloviruses and rhadinoviruses of multiple rodent species. The complete circular genome of the newly identified polyomavirus was amplified by PCR. Amino acid sequence analysis of the large T antigen or VP1 showed that this virus clustered with a known polyomavirus from a house mouse (species Mus musculus polyomavirus 1). These two polyomaviruses form a clade with other rodent polyomaviruses, and the newly identified virus represents the third known polyomavirus of M. natalensis. This study represents the first identification of herpesviruses and the discovery of a novel polyomavirus in M. natalensis. In contrast to arenaviruses, we anticipate that these newly identified viruses represent a low zoonotic risk due to the normally highly restricted specificity of members of these two DNA virus families to their individual mammalian host species.


Asunto(s)
Genoma Viral , Infecciones por Herpesviridae/epidemiología , Herpesviridae/genética , Filogenia , Infecciones por Polyomavirus/epidemiología , Poliomavirus/genética , Enfermedades de los Roedores/epidemiología , África del Sur del Sahara/epidemiología , Animales , Antígenos Virales de Tumores/genética , Proteínas de la Cápside/genética , Reservorios de Enfermedades/virología , Herpesviridae/clasificación , Herpesviridae/aislamiento & purificación , Infecciones por Herpesviridae/virología , Especificidad del Huésped , Tipificación Molecular , Murinae/virología , Poliomavirus/clasificación , Poliomavirus/aislamiento & purificación , Infecciones por Polyomavirus/virología , Enfermedades de los Roedores/virología , Proteínas del Envoltorio Viral/genética
5.
J Gen Virol ; 98(4): 704-714, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28113048

RESUMEN

The tumour antigens (TAgs) of mammalian polyomaviruses (PyVs) are key proteins responsible for modulating the host cell cycle and are involved in virus replication as well as cell transformation and tumour formation. Here we aimed to identify mRNA sequences of known and novel TAgs encoded by the recently discovered human polyomaviruses 9 and 12 (HPyV9 and HPyV12) in cell culture. Synthetic viral genomes were transfected into human and animal cell lines. Gene expression occurred in most cell lines, as measured by quantitative PCR of cDNA copies of mRNA encoding major structural protein VP1. Large TAg- and small TAg-encoding mRNAs were detected in all cell lines, and additional spliced mRNAs were identified encoding TAg variants of 145 aa (HPyV9) and 84 aa (HPyV12). Using as antigens in ELISA the N-terminal 78 aa common to all respective TAg variants of HPyV9 and HPyV12, seroreactivity of 100 healthy blood donors, 54 patients with malignant diseases of the gastrointestinal tract (GIT) and 32 patients with non-malignant diseases of the GIT was analysed. For comparison, the corresponding TAg N termini of BK PyV (BKPyV) and Merkel cell PyV (MCPyV) were included. Frequent reactivity against HPyV9, HPyV12 and BKPyV TAgs, but not MCPyV TAg, was observed in all tested groups. This indicates expression activity of the early region of three human PyVs in healthy and diseased subjects.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/inmunología , Variación Genética , Poliomavirus/genética , Poliomavirus/inmunología , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Gen Virol ; 98(12): 3060-3067, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29095685

RESUMEN

Shrews (family Soricidae) have already been reported to host microorganisms pathogenic for humans. In an effort to search for additional infectious agents with zoonotic potential, we detected polyomaviruses (PyVs) in common shrew, crowned shrew, and pygmy shrew (Sorex araneus, S. coronatus and S. minutus). From these, 11 full circular genomes were determined. Phylogenetic analysis based on large T protein sequences showed that these novel PyVs form a separate clade within the genus Alphapolyomavirus. Within this clade, the phylogenetic relationships suggest host-virus co-divergence. Surprisingly, one PyV from common shrew showed a genomic sequence nearly identical to that of the human polyomavirus 12 (HPyV12). This indicated that HPyV12 is a variant of a non-human PyV that naturally infects shrews. Whether HPyV12 is a bona fide human-tropic polyomavirus arising from a recent shrew-to-human transmission event or instead reflects a technical artefact, such as consumable contamination with shrew material, needs further investigation.

7.
J Gen Virol ; 98(6): 1159-1160, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28640744

RESUMEN

The Polyomaviridae is a family of small, non-enveloped viruses with circular dsDNA genomes of approximately 5 kbp. The family includes four genera whose members have restricted host range, infecting mammals and birds. Polyomavirus genomes have also been detected recently in fish. Merkel cell polyomavirus and raccoon polyomavirus are associated with cancer in their host; other members are human and veterinary pathogens. Clinical manifestations are obvious in immunocompromised patients but not in healthy individuals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Polyomaviridae, which is available at www.ictv.global/report/polyomaviridae.


Asunto(s)
Polyomaviridae/clasificación , Polyomaviridae/genética , Infecciones por Polyomavirus/veterinaria , Infecciones por Polyomavirus/virología , Infecciones Tumorales por Virus/veterinaria , Infecciones Tumorales por Virus/virología , Animales , Aves , Peces , Humanos , Mamíferos , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/patología , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/patología
8.
J Virol ; 90(19): 8531-41, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440885

RESUMEN

UNLABELLED: It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE: The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.


Asunto(s)
Evolución Molecular , Variación Genética , Especificidad del Huésped , Poliomavirus de Células de Merkel/clasificación , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/veterinaria , Infecciones Tumorales por Virus/veterinaria , África , Animales , Hominidae , Poliomavirus de Células de Merkel/aislamiento & purificación , Poliomavirus de Células de Merkel/fisiología , Infecciones por Polyomavirus/virología , Infecciones Tumorales por Virus/virología
9.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135936

RESUMEN

Human polyomavirus 9 (HPyV9) was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20-50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg). Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Motivos de Nucleótidos/genética , Poliomavirus/genética , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/química , Factor de Transcripción Sp1/metabolismo , Secuencia de Bases , Línea Celular , Humanos , Mutación/genética , Unión Proteica
10.
Mol Biol Evol ; 32(8): 2072-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25862141

RESUMEN

Human adenoviruses (HAdV; species HAdV-A to -G) are highly prevalent in the human population, and represent an important cause of morbidity and, to a lesser extent, mortality. Recent studies have identified close relatives of these viruses in African great apes, suggesting that some HAdV may be of zoonotic origin. We analyzed more than 800 fecal samples from wild African great apes and humans to further investigate the evolutionary history and zoonotic potential of hominine HAdV. HAdV-B and -E were frequently detected in wild gorillas (55%) and chimpanzees (25%), respectively. Bayesian ancestral host reconstruction under discrete diffusion models supported a gorilla and chimpanzee origin for these viral species. Host switches were relatively rare along HAdV evolution, with about ten events recorded in 4.5 My. Despite presumably rare direct contact between sympatric populations of the two species, transmission events from gorillas to chimpanzees were observed, suggesting that habitat and dietary overlap may lead to fecal-oral cross-hominine transmission of HAdV. Finally, we determined that two independent HAdV-B transmission events to humans occurred more than 100,000 years ago. We conclude that HAdV-B circulating in humans are of zoonotic origin and have probably affected global human health for most of our species lifetime.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Evolución Molecular , Hominidae/virología , Adenoviridae/genética , Adenoviridae/patogenicidad , Infecciones por Adenoviridae/genética , Infecciones por Adenoviridae/transmisión , Animales , Humanos , Especificidad de la Especie , Zoonosis/genética , Zoonosis/transmisión
11.
J Gen Virol ; 97(7): 1647-1657, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27031170

RESUMEN

Seroepidemiological studies showed that the human polyomavirus KI (KIPyV) is common in the human population, with age-specific seroprevalence ranging from 40-90 %. Genome epidemiological analyses demonstrated that KIPyV DNA is predominantly found in respiratory tract samples of immunocompromised individuals and children suffering from respiratory diseases, but viral sequences have also been detected in brain, tonsil, lymphoid tissue studies, plasma, blood and faeces. Little is known about the sequence variation in the non-coding control region of KIPyV variants residing in different sites of the human body and whether specific strains dominate in certain parts of the world. In this study, we sequenced the non-coding control region (NCCR) of naturally occurring KIPyV variants in nasopharyngeal samples from patients with respiratory symptoms or infection and in blood from healthy donors in Norway. In total 86 sequences were obtained, 44 of which were identical to the original isolated Stockholm 60 variant. The remaining NCCRs contained one or several mutations, none of them previously reported. The same mutations were detected in NCCRs amplified from blood and nasopharyngeal samples. Some patients had different variants in their specimens. Transient transfection studies in HEK293 cells with a luciferase reporter plasmid demonstrated that some single mutations had a significant effect on the relative early and late promoter strength compared with the Stockholm 60 promoter. The effect of the NCCR mutations on viral replication and possible virulence properties remains to be established.


Asunto(s)
ADN Viral/genética , Nasofaringe/virología , Infecciones por Polyomavirus/virología , Poliomavirus/genética , ARN no Traducido/genética , Secuencia de Bases , Línea Celular , Variación Genética/genética , Células HEK293 , Humanos , Noruega , Reacción en Cadena de la Polimerasa , Poliomavirus/aislamiento & purificación , Regiones Promotoras Genéticas/genética , Infecciones del Sistema Respiratorio/virología , Análisis de Secuencia de ADN
12.
J Virol ; 89(4): 2253-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505061

RESUMEN

UNLABELLED: Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE: Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.


Asunto(s)
Variación Genética , Lymphocryptovirus/genética , Lymphocryptovirus/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Análisis por Conglomerados , Genotipo , Humanos , Lymphocryptovirus/aislamiento & purificación , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Filogenia , Primates , Homología de Secuencia de Aminoácido
13.
Arch Virol ; 161(6): 1739-50, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26923930

RESUMEN

Many distinct polyomaviruses infecting a variety of vertebrate hosts have recently been discovered, and their complete genome sequence could often be determined. To accommodate this fast-growing diversity, the International Committee on Taxonomy of Viruses (ICTV) Polyomaviridae Study Group designed a host- and sequence-based rationale for an updated taxonomy of the family Polyomaviridae. Applying this resulted in numerous recommendations of taxonomical revisions, which were accepted by the Executive Committee of the ICTV in December 2015. New criteria for definition and creation of polyomavirus species were established that were based on the observed distance between large T antigen coding sequences. Four genera (Alpha-, Beta, Gamma- and Deltapolyomavirus) were delineated that together include 73 species. Species naming was made as systematic as possible - most species names now consist of the binomial name of the host species followed by polyomavirus and a number reflecting the order of discovery. It is hoped that this important update of the family taxonomy will serve as a stable basis for future taxonomical developments.


Asunto(s)
Polyomaviridae/clasificación , Polyomaviridae/genética , Animales , Antígenos Virales de Tumores/genética , Especificidad del Huésped , Humanos , Filogenia , Polyomaviridae/inmunología , Terminología como Asunto
14.
J Gen Virol ; 96(8): 2293-2303, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25968129

RESUMEN

Recently, 11 new human polyomaviruses (HPyVs) have been isolated and named KI, WU, Merkel cell polyomavirus (MCPyV), HPyV6, -7, -9, -10 and -12, Trichodysplasia spinulosa-associated polyomavirus (TSPyV), STLPyV and NJPyV-2013. Little is known about cell tropism of the novel HPyVs, and cell cultures allowing virus propagation are lacking. Because viral tropism partially depends on the interaction of cellular transcription factors with the viral promoter, we monitored the promoter activity of all known HPyVs. Therefore, we compared the relative early and late promoter activity of the BK polyomavirus (BKPyV) (WW strain) with the corresponding activities of the other HPyVs in 10 different cell lines derived from brain, colon, kidney, liver, lung, the oral cavity and skin. Our results show that the BKPyV, MCPyV, TSPyV and HPyV12 early promoters displayed the strongest activity in most cell lines tested, while the remaining HPyV had relative low early promoter activity. HPyV12 showed the highest late promoter activity of all HPyVs in most cell lines, but also the BKPyV, MCPyV and TSPyV late promoters belonged to the stronger ones among HPyVs. The HPyVs with weak early promoter activity had in general also weak late promoter activity, except for HPyV10 whose late promoter was relatively strong in six of the 10 cell lines. A 20 bp deletion in the promoter of an HPyV12 variant significantly affected both early and late promoter activity in most cell lines. In conclusion, our findings suggest which cell lines may be suitable for virus propagation and may give an indication of the cell tropism of the HPyVs.


Asunto(s)
Virus BK/genética , Regulación Viral de la Expresión Génica , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/virología , Poliomavirus/genética , Regiones Promotoras Genéticas , Virus BK/fisiología , Línea Celular , Humanos , Poliomavirus de Células de Merkel/fisiología , Poliomavirus/fisiología , Tropismo Viral
15.
J Gen Virol ; 96(10): 3090-3098, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26219820

RESUMEN

Human adenoviruses (HAdVs) of species Human mastadenovirus B (HAdV-B) are genetically highly diverse and comprise several pathogenic types. AdVs closely related to members of HAdV-B infect African great apes and the evolutionary origin of HAdV-B has recently been determined in ancient gorillas. Genetic evidence for intra- and inter-species recombination has been obtained for AdVs of humans and captive great apes, but evidence from wild great apes is lacking. In this study, potential HAdV-B members of wild Eastern gorillas were analysed for evidence of recombination. One near-complete genome was amplified from primary sample material and sequenced, and from another six individuals genome fragments were obtained. In phylogenomic analysis, their penton base, pVII-pVI, hexon and fiber genes were compared with those of all publicly available HAdV-B full-genome sequences of humans and captive great apes. Evidence for intra-species recombination between different HAdV-B members of wild gorillas as well as between HAdV-B members of chimpanzees and gorillas was obtained. Since zoonotic AdVs have been reported to cause respiratory outbreaks in both humans and monkeys, and humans in West and Central Africa frequently hunt and butcher primates thereby increasing the chance of zoonotic transmission, such HAdV-B recombinants might widen the pool of potential human pathogens.


Asunto(s)
Infecciones por Adenoviridae/veterinaria , Adenoviridae/clasificación , Adenoviridae/genética , Enfermedades del Simio Antropoideo/virología , Variación Genética , Gorilla gorilla , Filogenia , Recombinación Genética , Adenoviridae/aislamiento & purificación , Infecciones por Adenoviridae/virología , África Central , África Occidental , Animales , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia , Proteínas Virales/genética
16.
J Gen Virol ; 96(Pt 6): 1411-1422, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25626684

RESUMEN

Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.


Asunto(s)
ADN Viral/química , Especificidad del Huésped , Mustelidae/virología , Infecciones por Polyomavirus/veterinaria , Poliomavirus/aislamiento & purificación , Poliomavirus/fisiología , Infecciones Tumorales por Virus/veterinaria , Animales , Análisis por Conglomerados , ADN Viral/genética , Europa (Continente) , Genoma Viral , Datos de Secuencia Molecular , Filogenia , Poliomavirus/clasificación , Poliomavirus/genética , Infecciones por Polyomavirus/virología , Análisis de Secuencia de ADN , Homología de Secuencia , Infecciones Tumorales por Virus/virología
17.
J Virol ; 88(11): 6100-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648448

RESUMEN

UNLABELLED: Human polyomavirus 9 (HPyV9) is a closely related homologue of simian B-lymphotropic polyomavirus (LPyV). In order to define the architecture and receptor binding properties of HPyV9, we solved high-resolution crystal structures of its major capsid protein, VP1, in complex with three putative oligosaccharide receptors identified by glycan microarray screening. Comparison of the properties of HPyV9 VP1 with the known structure and glycan-binding properties of LPyV VP1 revealed that both viruses engage short sialylated oligosaccharides, but small yet important differences in specificity were detected. Surprisingly, HPyV9 VP1 preferentially binds sialyllactosamine compounds terminating in 5-N-glycolyl neuraminic acid (Neu5Gc) over those terminating in 5-N-acetyl neuraminic acid (Neu5Ac), whereas LPyV does not exhibit such a preference. The structural analysis demonstrated that HPyV9 makes specific contacts, via hydrogen bonds, with the extra hydroxyl group present in Neu5Gc. An equivalent hydrogen bond cannot be formed by LPyV VP1. IMPORTANCE: The most common sialic acid in humans is 5-N-acetyl neuraminic acid (Neu5Ac), but various modifications give rise to more than 50 different sialic acid variants that decorate the cell surface. Unlike most mammals, humans cannot synthesize the sialic acid variant 5-N-glycolyl neuraminic acid (Neu5Gc) due to a gene defect. Humans can, however, still acquire this compound from dietary sources. The role of Neu5Gc in receptor engagement and in defining viral tropism is only beginning to emerge, and structural analyses defining the differences in specificity for Neu5Ac and Neu5Gc are still rare. Using glycan microarray screening and high-resolution protein crystallography, we have examined the receptor specificity of a recently discovered human polyomavirus, HPyV9, and compared it to that of the closely related simian polyomavirus LPyV. Our study highlights critical differences in the specificities of both viruses, contributing to an enhanced understanding of the principles that underlie pathogen selectivity for modified sialic acids.


Asunto(s)
Proteínas de la Cápside/química , Modelos Moleculares , Ácidos Neuramínicos/metabolismo , Poliomavirus/química , Poliomavirus/genética , Conformación Proteica , Proteínas de la Cápside/metabolismo , Clonación Molecular , Cristalografía , Humanos , Enlace de Hidrógeno , Análisis por Micromatrices , Polisacáridos
18.
PLoS Pathog ; 9(6): e1003429, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818846

RESUMEN

Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP) polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan), five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified) had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1) of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA). Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses.


Asunto(s)
Proteínas de la Cápside/genética , Enfermedades de los Monos/genética , Filogenia , Platirrinos/virología , Infecciones por Polyomavirus/genética , Poliomavirus/genética , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Enfermedades de los Monos/sangre , Platirrinos/sangre , Poliomavirus/metabolismo , Infecciones por Polyomavirus/sangre
19.
Virol J ; 12: 155, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26437859

RESUMEN

BACKGROUND: Cytomegaloviruses (CMVs) are herpesviruses that infect many mammalian species, including humans. Infection generally passes undetected, but the virus can cause serious disease in individuals with impaired immune function. Human CMV (HCMV) is circulating with high seroprevalence (60-100 %) on all continents. However, little information is available on HCMV genoprevalence and genetic diversity in subsaharan Africa, especially in rural areas of West Africa that are at high risk of human-to-human HCMV transmission. In addition, there is a potential for zoonotic spillover of pathogens through bushmeat hunting and handling in these areas as shown for various retroviruses. Although HCMV and nonhuman CMVs are regarded as species-specific, potential human infection with CMVs of non-human primate (NHP) origin, shown to circulate in the local NHP population, has not been studied. FINDINGS: Analysis of 657 human oral swabs and fecal samples collected from 518 individuals living in 8 villages of Côte d'Ivoire with generic PCR for identification of human and NHP CMVs revealed shedding of HCMV in 2.5 % of the individuals. Determination of glycoprotein B sequences showed identity with strains Towne, AD169 and Toledo, respectively. NHP CMV sequences were not detected. CONCLUSIONS: HCMV is actively circulating in a proportion of the rural Côte d'Ivoire human population with circulating strains being closely related to those previously identified in non-African countries. The lack of NHP CMVs in human populations in an environment conducive to cross-species infection supports zoonotic transmission of CMVs to humans being at most a rare event.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/clasificación , Citomegalovirus/genética , Variación Genética , Côte d'Ivoire/epidemiología , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/epidemiología , Heces/virología , Genotipo , Humanos , Epidemiología Molecular , Boca/virología , Prevalencia , Población Rural , Análisis de Secuencia de ADN , Proteínas del Envoltorio Viral/genética
20.
Rev Med Virol ; 24(5): 343-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24888895

RESUMEN

Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.


Asunto(s)
Coinfección/virología , Neoplasias/virología , Infecciones por Polyomavirus/virología , Poliomavirus/fisiología , Infecciones por Retroviridae/virología , Retroviridae/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA