Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 133(24): 2597-2609, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-30962205

RESUMEN

CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/patología , Transformación Celular Neoplásica/patología , Antígeno Ki-1/inmunología , Linfoma de Células B/metabolismo , Animales , Antígeno Ki-1/metabolismo , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones , Ratones Transgénicos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Células Precursoras de Linfocitos B/metabolismo , Células Precursoras de Linfocitos B/patología , Transducción de Señal/fisiología
2.
Nat Commun ; 15(1): 1960, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438375

RESUMEN

Sustained Notch2 signals induce trans-differentiation of Follicular B (FoB) cells into Marginal Zone B (MZB) cells in mice, but the physiology underlying this differentiation pathway is still elusive. Here, we demonstrate that most B cells receive a basal Notch signal, which is intensified in pre-MZB and MZB cells. Ablation or constitutive activation of Notch2 upon T-cell-dependent immunization reveals an interplay between antigen-induced activation and Notch2 signaling, in which FoB cells that turn off Notch2 signaling enter germinal centers (GC), while high Notch2 signaling leads to generation of MZB cells or to initiation of plasmablast differentiation. Notch2 signaling is dispensable for GC dynamics but appears to be re-induced in some centrocytes to govern expansion of IgG1+ GCB cells. Mathematical modelling suggests that antigen-activated FoB cells make a Notch2 dependent binary fate-decision to differentiate into either GCB or MZB cells. This bifurcation might serve as a mechanism to archive antigen-specific clones into functionally and spatially diverse B cell states to generate robust antibody and memory responses.


Asunto(s)
Antígenos de Grupos Sanguíneos , Inmunización , Animales , Ratones , Linfocitos B , Centro Germinal , Inmunoglobulina G , Vacunación
3.
Blood ; 118(24): 6321-31, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21795747

RESUMEN

B cell-specific gene ablation of Notch2 results in the loss of the marginal zone (MZ) B-cell lineage. To analyze the effects of constitutive Notch2 signaling in B cells, we have generated a transgenic mouse strain that allows the conditional expression of a constitutively active, intracellular form of Notch2 (Notch2IC). Expression of Notch2IC at the earliest developmental stages of the B-cell lineage completely abolished B-cell generation and led to the development of ectopic T cells in the bone marrow (BM), showing that Notch2IC is acting redundantly with Notch1IC in driving ectopic T-cell differentiation. In B cells clearly committed to the B-cell lineage induction of Notch2IC drove all cells toward the MZ B-cell compartment at the expense of follicular B cells. Notch2IC-expressing B cells reflected the phenotype of wild-type MZ B cells for their localization in the MZ, the expression of characteristic surface markers, their enhanced proliferation after stimulation, and increased basal activity of Akt, Erk, and Jnk. Notch2IC-driven MZ B-cell generation in the spleen was achieved even in the absence of CD19. Our results implicate that a constitutive Notch2 signal in transitional type 1 B cells is sufficient to drive MZ B-cell differentiation.


Asunto(s)
Antígenos CD19/metabolismo , Linfocitos B/citología , Linfopoyesis , Sistema de Señalización de MAP Quinasas , Receptor Notch2/metabolismo , Bazo/citología , Animales , Antígenos CD19/genética , Linfocitos B/metabolismo , Células de la Médula Ósea/metabolismo , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Cruzamientos Genéticos , Heterocigoto , Homocigoto , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor Notch2/genética , Bazo/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
4.
Sci Signal ; 14(682)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975980

RESUMEN

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.


Asunto(s)
Linfocitos B/citología , Quinasas MAP Reguladas por Señal Extracelular , Células Plasmáticas/citología , Proteínas Proto-Oncogénicas c-raf , Animales , Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas , Fosforilación , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo
5.
Science ; 333(6051): 1903-7, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21885734

RESUMEN

The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid-containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.


Asunto(s)
Ansiedad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Hormona Liberadora de Corticotropina/metabolismo , Miedo , Hipocampo/metabolismo , Masculino , Memoria , Mesencéfalo , Ratones , Ratones Noqueados , Actividad Motora , Corteza Prefrontal/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/genética , Transmisión Sináptica , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA