Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infection ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896372

RESUMEN

PURPOSE: There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS: We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS: An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION: High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.

2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612684

RESUMEN

The variability in mortality in sepsis could be a consequence of genetic variability. The glucocorticoid system and the intermediate TSC22D3 gene product-glucocorticoid-induced leucine zipper-are clinically relevant in sepsis, which is why this study aimed to clarify whether TSC22D3 gene polymorphisms contribute to the variance in sepsis mortality. Blood samples for DNA extraction were obtained from 455 patients with a sepsis diagnosis according to the Sepsis-III criteria and from 73 control subjects. A SNP TaqMan assay was used to detect single-nucleotide polymorphisms (SNPs) in the TSC22D3 gene. Statistical and graphical analyses were performed using the SPSS Statistics and GraphPad Prism software. C-allele carriers of rs3747406 have a 2.07-fold higher mortality rate when the sequential organ failure assessment (SOFA) score is higher than eight. In a multivariate COX regression model, the SNP rs3747406 with a SOFA score ≥ 8 was found to be an independent risk factor for 30-day survival in sepsis. The HR was calculated to be 2.12, with a p-value of 0.011. The wild-type allele was present in four out of six SNPs in our cohort. The promoter of TSC22D3 was found to be highly conserved. However, we discovered that the C-allele of rs3747406 poses a risk for sepsis mortality for SOFA Scores higher than 6.


Asunto(s)
Puntuaciones en la Disfunción de Órganos , Sepsis , Humanos , Glucocorticoides , Leucina Zippers , Polimorfismo de Nucleótido Simple , Sepsis/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279209

RESUMEN

Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.


Asunto(s)
Acuaporinas , Sepsis , Humanos , Acuaporina 3/genética , Acuaporina 3/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Sepsis/genética
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338680

RESUMEN

Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.


Asunto(s)
Acuaporinas , Sepsis , Humanos , Acuaporina 3/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Genotipo , Interleucina-33/genética , Interleucina-33/metabolismo , ARN Mensajero/metabolismo , Sepsis/genética , Sepsis/metabolismo
5.
Immunity ; 40(1): 66-77, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412613

RESUMEN

Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.


Asunto(s)
Colitis/inmunología , Hipoxia/inmunología , Membrana Mucosa/metabolismo , Neutrófilos/patología , Animales , Comunicación Celular , Movimiento Celular , Células Cultivadas , Microambiente Celular , Colitis/inducido químicamente , Colon/patología , Modelos Animales de Enfermedad , Hipoxia/inducido químicamente , Factor 1 Inducible por Hipoxia/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Membrana Mucosa/patología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Estrés Oxidativo , Oxígeno/metabolismo , Estabilidad Proteica/efectos de los fármacos , Migración Transendotelial y Transepitelial
6.
Neurosurg Rev ; 46(1): 155, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37382699

RESUMEN

OBJECT: Postoperative intensive care unit (ICU) monitoring is a common regime after neurosurgical resection of brain metastasis (BM). In comparison, unplanned secondary readmission to the ICU after initial postoperative treatment course occurs in response to adverse events and might significantly impact patient prognosis. In the present study, we analyzed the potential prognostic implications of unplanned readmission to the ICU and aimed at identifying preoperatively collectable risk factors for the development of such adverse events. METHODS: Between 2013 and 2018, 353 patients with BM had undergone BM resection at the authors' institution. Secondary ICU admission was defined as any unplanned admission to the ICU during the initial hospital stay. A multivariable logistic regression analysis was performed to identify preoperatively identifiable risk factors for unplanned ICU readmission. RESULTS: A total of 19 patients (5%) were readmitted to the ICU. Median overall survival (mOS) of patients with unplanned ICU readmission was 2 months (mo) compared to 13 mo for patients without secondary ICU admission (p<0.0001). Multivariable analysis identified "multiple BM" (p=0.02) and "preoperative CRP levels > 10 mg/dl" (p=0.01) as significant and independent predictors of secondary ICU admission. CONCLUSIONS: Unplanned ICU readmission following surgical therapy for BM is significantly related to poor OS. Furthermore, the present study identifies routinely collectable risk factors indicating patients that are at a high risk for unplanned ICU readmission after BM surgery.


Asunto(s)
Neoplasias Encefálicas , Readmisión del Paciente , Humanos , Hospitalización , Unidades de Cuidados Intensivos , Neoplasias Encefálicas/cirugía , Craneotomía
7.
Neurosurg Rev ; 46(1): 30, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593389

RESUMEN

Postoperative intensive care unit (ICU) monitoring is an established option to ensure patient safety after resection of newly diagnosed glioblastoma. In contrast, secondary unplanned ICU readmission following complicating events during the initial postoperative course might be associated with severe morbidity and impair initially intended surgical benefit. In the present study, we assessed the prognostic impact of secondary ICU readmission and aimed to identify preoperatively ascertainable risk factors for the development of such adverse events in patients treated surgically for newly diagnosed glioblastoma. Between 2013 and 2018, 240 patients were surgically treated for newly diagnosed glioblastoma at the authors' neuro-oncological center. Secondary ICU readmission was defined as any unplanned admission to the ICU during initial hospital stay. A multivariable logistic regression analysis was performed to identify preoperatively measurable risk factors for unplanned ICU readmission. Nineteen of 240 glioblastoma patients (8%) were readmitted to the ICU. Median overall survival of patients with unplanned ICU readmission was 9 months compared to 17 months for patients without secondary ICU readmission (p=0.008). Multivariable analysis identified "preoperative administration of dexamethasone > 7 days" (p=0.002) as a significant and independent predictor of secondary unplanned ICU admission. Secondary ICU readmission following surgery for newly diagnosed glioblastoma is significantly associated with poor survival and thus may negate surgically achieved prerequisites for further treatment. This underlines the indispensability of precise patient selection as well as the importance of further scientific debate on these highly relevant aspects for patient safety.


Asunto(s)
Glioblastoma , Readmisión del Paciente , Humanos , Glioblastoma/cirugía , Estudios Retrospectivos , Unidades de Cuidados Intensivos , Factores de Riesgo , Tiempo de Internación
8.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020672

RESUMEN

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Anticoagulantes/uso terapéutico , COVID-19/complicaciones , COVID-19/terapia , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Hemorragias Intracraneales/tratamiento farmacológico , Hemorragias Intracraneales/epidemiología , Hemorragias Intracraneales/etiología , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
9.
BMC Anesthesiol ; 22(1): 12, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986787

RESUMEN

BACKGROUND: The COVID-19 pandemic has taken a toll on health care systems worldwide, which has led to increased mortality of different diseases like myocardial infarction. This is most likely due to three factors. First, an increased workload per nurse ratio, a factor associated with mortality. Second, patients presenting with COVID-19-like symptoms are isolated, which also decreases survival in cases of emergency. And third, patients hesitate to see a doctor or present themselves at a hospital. To assess if this is also true for sepsis patients, we asked whether non-COVID-19 sepsis patients had an increased 30-day mortality during the COVID-19 pandemic. METHODS: This is a post hoc analysis of the SepsisDataNet.NRW study, a multicentric, prospective study that includes septic patients fulfilling the SEPSIS-3 criteria. Within this study, we compared the 30-day mortality and disease severity of patients recruited pre-pandemic (recruited from March 2018 until February 2020) with non-COVID-19 septic patients recruited during the pandemic (recruited from March 2020 till December 2020). RESULTS: Comparing septic patients recruited before the pandemic to those recruited during the pandemic, we found an increased raw 30-day mortality in sepsis-patients recruited during the pandemic (33% vs. 52%, p = 0.004). We also found a significant difference in the severity of disease at recruitment (SOFA score pre-pandemic: 8 (5 - 11) vs. pandemic: 10 (8 - 13); p < 0.001). When adjusted for this, the 30-day mortality rates were not significantly different between the two groups (52% vs. 52% pre-pandemic and pandemic, p = 0.798). CONCLUSIONS: This led us to believe that the higher mortality of non-COVID19 sepsis patients during the pandemic might be attributed to a more severe septic disease at the time of recruitment. We note that patients may experience a delayed admission, as indicated by elevated SOFA scores. This could explain the higher mortality during the pandemic and we found no evidence for a diminished quality of care for critically ill sepsis patients in German intensive care units.


Asunto(s)
COVID-19/prevención & control , Pandemias , Sepsis/mortalidad , Tiempo de Tratamiento/estadística & datos numéricos , Anciano , Femenino , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Estudios Prospectivos , SARS-CoV-2 , Análisis de Supervivencia
10.
Arch Gynecol Obstet ; 305(1): 275-286, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259940

RESUMEN

PURPOSE: This study aimed at assessing gene expression profiles in hippocampus and hypothalamus of ovariectomized (OVX) rats with or without treatment with an isopropanolic extract of Cimicifuga racemosa rhizomes (iCR) in comparison to intact rats. METHODS: Exploration of hippocampal (Hi) and hypothalamic (Hy) tissue from Sprague Dawley rats: without OVX (NHi = NHy = 4), tissues 3 months after OVX (NHi = 4, NHy = 3), or tissues of rats after their treatment with iCR for 3 months after OVX (NHi = NHy = 2). Gene expression profiles in these tissues were investigated by RNA-microarray-analysis and subsequent verification by qPCR. RESULTS: 4812 genes were differentially regulated when comparing the three groups in hippocampus and hypothalamus. iCR compensated the effects of OVX in 518 genes. This compensatory effect was most prominent in hippocampal signalling pathways, thereof genes (GAL, CALCA, HCRT, AVPR1A, PNOC, etc.) involved in thermoregulation, regulation of sleep and arousal, blood pressure regulation, metabolism, nociception, hormonal regulation, homeostasis, learning and cognition, mood regulation, neuroendocrine modulation, etc.. In the hypothalamus, iCR compensated OVX-effects at TAC3 and OPRM1 but not at KISS1. These genes are involved in the pathophysiology of hot flashes. CONCLUSIONS: Our pilot study findings support a multifaceted mode of action of iCR in menopausal complaints on a tissue-specific brain gene expression level.


Asunto(s)
Cimicifuga , Hipocampo/metabolismo , Hipotálamo/metabolismo , Extractos Vegetales , Transcriptoma , Animales , Cimicifuga/química , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Menopausia , Ovariectomía , Fitoterapia , Proyectos Piloto , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
11.
Medicina (Kaunas) ; 58(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893103

RESUMEN

Background and Objectives: Treatment-limiting decisions (TLDs) are employed to actively withhold treatment/invasive interventions from patients in whom clinicians feel they would derive little to no benefit and/or suffer detrimental effects. Data regarding the employment of TLDs in patients with spontaneous intracerebral hemorrhage (ICH) remain sparse. Accordingly, this study sought to investigate both the prevalence of TLDs and factors driving TLDs in patients suffering from spontaneous ICH. Materials and Methods: This was a retrospective study of 249 consecutive patients with ICH treated from 2018−2019 at the Neurovascular Center of the University Hospital Bonn. Reasons deemed critical in the decision-making process with regard to TLD were ultimately extracted/examined via chart review of qualifying patients. Results: A total of 249 patients with ICH were included within the final analyses. During the time period examined, 49 patients (20%) had advanced directives in place, whereas in 53 patients (21%) consultation with relatives or acquaintances was employed before further treatment decisions. Overall, TLD ultimately manifested in 104 patients (42%). TLD was reached within 6 h after admission in 52 patients (50%). Congruent with severity of injury and expected outcomes, TLDs were more likely in patients with signs of cerebral herniation and an ICH score > 3 (p < 0.001). Conclusions: The present study examines details associated with TLDs in patients with spontaneous ICH. These data provide insight into key decisional processes and reinforce the need for further structured investigations in an effort to help guide patients and their families.


Asunto(s)
Hemorragia Cerebral , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/terapia , Humanos , Estudios Retrospectivos
12.
Crit Care ; 24(1): 701, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397427

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) support in acute respiratory failure may be lifesaving, but bleeding and thromboembolic complications are common. The optimal anticoagulation strategy balancing these factors remains to be determined. This retrospective study compared two institutional anticoagulation management strategies focussing on oxygenator changes and both bleeding and thromboembolic events. METHODS: We conducted a retrospective observational cohort study between 04/2015 and 02/2020 in two ECMO referral centres in Germany in patients receiving veno-venous (VV)-ECMO support for acute respiratory failure for > 24 h. One centre routinely applied low-dose heparinization aiming for a partial thromboplastin time (PTT) of 35-40 s and the other routinely used a high-dose therapeutic heparinization strategy aiming for an activated clotting time (ACT) of 140-180 s. We assessed number of and time to ECMO oxygenator changes, 15-day freedom from oxygenator change, major bleeding events, thromboembolic events, 30-day ICU mortality, activated clotting time and partial thromboplastin time and administration of blood products. Primary outcome was the occurrence of oxygenator changes depending on heparinization strategy; main secondary outcomes were the occurrence of severe bleeding events and occurrence of thromboembolic events. The transfusion strategy was more liberal in the low-dose centre. RESULTS: Of 375 screened patients receiving VV-ECMO support, 218 were included in the analysis (117 high-dose group; 101 low-dose group). Disease severity measured by SAPS II score was 46 (IQR 36-57) versus 47 (IQR 37-55) and ECMO runtime was 8 (IQR 5-12) versus 11 (IQR 7-17) days (P = 0.003). There were 14 oxygenator changes in the high-dose group versus 48 in the low-dose group. Freedom from oxygenator change at 15 days was 73% versus 55% (adjusted HR 3.34 [95% confidence interval 1.2-9.4]; P = 0.023). Severe bleeding events occurred in 23 (19.7%) versus 14 (13.9%) patients (P = 0.256) and thromboembolic events occurred in 8 (6.8%) versus 19 (19%) patients (P = 0.007). Mortality at 30 days was 33.3% versus 30.7% (P = 0.11). CONCLUSIONS: In this retrospective study, ECMO management with high-dose heparinization was associated with lower rates of oxygenator changes and thromboembolic events when compared to a low-dose heparinization strategy. Prospective, randomized trials are needed to determine the optimal anticoagulation strategy in patients receiving ECMO support.


Asunto(s)
Anticoagulantes/administración & dosificación , Insuficiencia Respiratoria/terapia , Resultado del Tratamiento , Adulto , Anticoagulantes/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Pruebas de Coagulación Sanguínea/métodos , Estudios de Cohortes , Oxigenación por Membrana Extracorpórea/métodos , Oxigenación por Membrana Extracorpórea/estadística & datos numéricos , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Insuficiencia Respiratoria/fisiopatología , Estudios Retrospectivos , Puntuación Fisiológica Simplificada Aguda
13.
Mediators Inflamm ; 2020: 8294342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617075

RESUMEN

Sepsis is associated with a strong inflammatory reaction triggering a complex and prolonged immune response. Septic patients have been shown to develop sustained immunosuppression due to a reduced responsiveness of leukocytes to pathogens. Changes in cellular metabolism of leukocytes have been linked to this phenomenon and contribute to the ongoing immunological derangement. However, the underlying mechanisms of these phenomena are incompletely understood. In cell culture models, we mimicked LPS tolerance conditions to provide evidence that epigenetic modifications account for monocyte metabolic changes which cause immune paralysis in restimulated septic monocytes. In detail, we observed differential methylation of CpG sites related to metabolic activity in human PBMCs 18 h after septic challenge. The examination of changes in immune function and metabolic pathways was performed in LPS-tolerized monocytic THP-1 cells. Passaged THP-1 cells, inheriting initial LPS challenge, presented with dysregulation of cytokine expression and oxygen consumption for up to 7 days after the initial LPS treatment. Proinflammatory cytokine concentrations of TNFα and IL1ß were significantly suppressed following a second LPS challenge (p < 0.001) on day 7 after first LPS stimulation. However, the analysis of cellular metabolism did not reveal any noteworthy alterations between tolerant and nontolerant THP-1 monocytes. No quantitative differences in ATP and NADH synthesis or participating enzymes of energy metabolism occurred. Our data demonstrate that the function and epigenetic modifications of septic and tolerized monocytes can be examined in vitro with the help of our LPS model. Changes in CpG site methylation and monocyte function point to a correlation between epigenetic modification in metabolic pathways and reduced monocyte function under postseptic conditions.


Asunto(s)
Endotoxinas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Voluntarios Sanos , Humanos , Ácido Láctico/metabolismo , Lipopolisacáridos/farmacología , NAD/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células THP-1
14.
BMC Anesthesiol ; 19(1): 19, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704395

RESUMEN

BACKGROUND: Extra Corporeal Membrane Oxygenation (ECMO) has become an accepted treatment option for severely ill patients. Due to a limited availability of ECMO support therapy, patients must often be transported to a specialised centre before or after cannulation. According to the ELSO guidelines, an ECMO specialist should be present for such interventions. Here we describe the safety and efficacy of a reduced team approach involving one anaesthesiologist, experienced in specialised intensive care medicine, and a specialised critical care nurse. METHODS: This study is a 10 years retrospective, single institution analysis of all data collected between January 2007 and December 2016 from the medical records at the University Hospital Bonn, Germany. RESULTS: The Bonner mobile ECMO team was deployed in 170 cases for on-site evaluation for ECMO support therapy. 4 (2.4%) patients died prior to arrival or during the implementation of ECMO support. Of the remaining 166 patients, 126 were cannulated at the referring site, 40 were transported without ECMO. Of those, 21 were subsequently cannulated out our centre. 19 patients never received ECMO treatment. The primary indication for ECMO treatment was ARDS (159/166 patients). Veno-venous ECMO was initiated in 137, whilst 10 patients received veno-arterial ECMO treatment. Mean transportation time was 75 ± 36 min, and mean transport distance was 56 ± 57 km. In total, 26 complications were observed, three being directly transport-related. The overall survival was 55%. CONCLUSIONS: Initiation of extracorporeal membrane oxygenation and subsequent transport can be safely and efficiently performed by a two-man team with good outcome.


Asunto(s)
Oxigenación por Membrana Extracorpórea/métodos , Grupo de Atención al Paciente/organización & administración , Transferencia de Pacientes/organización & administración , Síndrome de Dificultad Respiratoria/terapia , Adolescente , Adulto , Anciano , Anestesiólogos/organización & administración , Estudios de Cohortes , Femenino , Alemania , Hospitales Universitarios , Humanos , Masculino , Persona de Mediana Edad , Personal de Enfermería en Hospital/organización & administración , Estudios Retrospectivos , Adulto Joven
15.
Genes Dev ; 25(17): 1835-46, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21896656

RESUMEN

The silent information regulator 2/3/4 (Sir2/3/4) complex is required for gene silencing at the silent mating-type loci and at telomeres in Saccharomyces cerevisiae. Sir3 is closely related to the origin recognition complex 1 subunit and consists of an N-terminal bromo-adjacent homology (BAH) domain and a C-terminal AAA(+) ATPase-like domain. Here, through a combination of structure biology and exhaustive mutagenesis, we identified unusual, silencing-specific features of the AAA(+) domain of Sir3. Structural analysis of the putative nucleotide-binding pocket in this domain reveals a shallow groove that would preclude nucleotide binding. Mutation of this site has little effect on Sir3 function in vivo. In contrast, several surface regions are shown to be necessary for the Sir3 silencing function. Interestingly, the Sir3 AAA(+) domain is shown here to bind chromatin in vitro in a manner sensitive to histone H3K79 methylation. Moreover, an exposed loop on the surface of this Sir3 domain is found to interact with Sir4. In summary, the unique folding of this conserved Sir3 AAA(+) domain generates novel surface regions that mediate Sir3-Sir4 and Sir3-nucleosome interactions, both being required for the proper assembly of heterochromatin in living cells.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Alelos , Cromatina/metabolismo , Metilación de ADN , Histonas/química , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
18.
FASEB J ; 29(1): 208-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326537

RESUMEN

There is interest in understanding post-translational modifications of proteins in inflammatory disease. Neddylation is the conjugation of the molecule neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to promote protein stabilization. Cullins are a family of NEDD8 targets important in the stabilization and degradation of proteins, such as hypoxia-inducible factor (HIF; via Cullin-2). Here, we elucidate the role of human deneddylase-1 (DEN-1, also called SENP8) in inflammatory responses in vitro and in vivo and define conditions for targeting neddylation in models of mucosal inflammation. HIF provides protection in inflammatory models, so we examined the contribution of DEN-1 to HIF stabilization. Pharmacologic targeting of neddylation activity with MLN4924 (IC50, 4.7 nM) stabilized HIF-1α, activated HIF promoter activity by 2.5-fold, and induced HIF-target genes in human epithelial cells up to 5-fold. Knockdown of DEN-1 in human intestinal epithelial cells resulted in increased kinetics in barrier formation, decreased permeability, and enhanced barrier restitution by 2 ± 0.5-fold. Parallel studies in vivo revealed that MLN4924 abrogated disease severity in murine dextran sulfate sodium colitis, including weight loss, colon length, and histologic severity. We conclude that DEN-1 is a regulator of cullin neddylation and fine-tunes the inflammatory response in vitro and in vivo. Pharmacologic inhibition of cullin neddylation may provide a therapeutic opportunity in mucosal inflammatory disease.


Asunto(s)
Proteínas Cullin/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/prevención & control , Animales , Línea Celular , Proteínas Cullin/antagonistas & inhibidores , Ciclopentanos/farmacología , Modelos Animales de Enfermedad , Endopeptidasas/genética , Endopeptidasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Proteína NEDD8 , Inhibidores de Proteasas/farmacología , Estabilidad Proteica , Pirimidinas/farmacología , Ubiquitinas/metabolismo
19.
J Immunol ; 192(3): 1267-76, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24367025

RESUMEN

Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.


Asunto(s)
Células Epiteliales/metabolismo , Interferón gamma/farmacología , Subunidad alfa del Receptor de Interleucina-10/biosíntesis , Interleucina-10/fisiología , Mucosa Intestinal/metabolismo , Animales , Línea Celular , Polaridad Celular , Colitis/inducido químicamente , Colitis/metabolismo , Citocinas/biosíntesis , Citocinas/genética , Sulfato de Dextran/toxicidad , Dextranos/farmacocinética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Regulación de la Expresión Génica , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Interferón gamma/fisiología , Subunidad alfa del Receptor de Interleucina-10/genética , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Proteínas Supresoras de la Señalización de Citocinas/genética
20.
J Negat Results Biomed ; 15: 9, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-27109115

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) are involved in a variety of cardiovascular disorders, including septic cardiomyopathy, ischemia/reperfusion, heart failure, and cardiac hypertrophy. Previous research revealed that TLR4 promotes cardiac hypertrophy in vivo. Therefore, we investigated whether TLR2 is also involved in the development of cardiac hypertrophy. METHODS: Tlr2 deficient and wild type mice were subjected to transverse aortic constriction (TAC) or sham operation procedure. Left ventricular, heart and lung weights as well as hemodynamic parameters were determined after 3, 14 or 28 days. Real-time RT PCR was used to evaluate left ventricular gene expression. Protein content was determined via ELISA. RESULTS: TAC increased systolic left ventricular pressure, contraction and relaxations velocities as well as the heart weight in both genotypes. Tlr2 deficiency significantly enhanced cardiac hypertrophy after 14 and 28 days of TAC. Left ventricular end-diastolic pressure and heart rate increased in Tlr2(-/-) TAC mice only. Fourteen days of TAC led to a significant elevation of ANP, BNP, TGFß and TLR4 mRNA levels in Tlr2(-/-) left ventricular tissue. CONCLUSION: These data suggest that Tlr2 deficiency may promote the development of cardiac hypertrophy and ventricular remodeling after transverse aortic constriction.


Asunto(s)
Estenosis de la Válvula Aórtica/fisiopatología , Hipertrofia Ventricular Izquierda/fisiopatología , Receptor Toll-Like 2/fisiología , Animales , Estenosis de la Válvula Aórtica/genética , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/genética , Masculino , Ratones , Presión , ARN Mensajero/genética , Receptor Toll-Like 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA