Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Pharm ; 563: 208-216, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30953763

RESUMEN

Biopharmaceutical development is progressing rapidly. It is imperative that novel drug delivery systems are designed to protect the integrity of the biopharmaceutical, and, at the same time, transport and distribute the drug efficaciously to the target site. Administration of highly specific and sensitive molecules, like therapeutic proteins or nucleic acid-based drugs, present distinct challenges. In this study, we investigate the topical drug delivery of 10-23 DNAzymes; short single-stranded oligonucleotides with RNA-cleaving properties. We developed different hydrogel formulations based on chitosan. These natural-based polymers are particularly suitable for biopharmaceuticals due to their high biocompatibility and biodegradability. We tested these hydrogels for penetration enhancement and for protective efficacy against DNAzymes degradation. Additionally, we examined the physicochemical characteristics and the storage stability of several hydrogel preparations. The formulations developed in this study demonstrate adequate antimicrobial activity, even without the addition of preservatives. A DNAse II degradation assay confirmed their ability to prevent enzymatic degradation of the oligonucleotide. The recovery of intact oligonucleotides in full thickness porcine skin samples indicated that hydrogel formulations composed of DNA/chitosan polyplexes provided satisfactory skin penetration.


Asunto(s)
Quitosano/administración & dosificación , ADN Catalítico/administración & dosificación , ADN de Cadena Simple/administración & dosificación , Hidrogeles/administración & dosificación , Administración Cutánea , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Quitosano/química , ADN Catalítico/química , ADN de Cadena Simple/química , Hidrogeles/química , Piel/metabolismo , Absorción Cutánea , Porcinos
2.
Eur J Pharm Biopharm ; 107: 80-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27378285

RESUMEN

DNAzymes are catalytic nucleic acid based molecules that have become a new class of active pharmaceutical ingredients (API). Until now, five DNAzymes have entered clinical trials. Two of them were tested for topical application, whereby dermally applied DNAzymes had been prone to enzymatic degradation. To protect the DNAzymes the enzymatic activity of human skin has to be examined. Therefore, the enzymatic activity of human skin was qualitatively and quantitatively analyzed. Activity similar to that of DNase II could be identified and the specific activity was determined to be 0.59Units/mg. These results were used to develop an in vitro degradation assay to screen different kinds of protective systems on human skin. The chosen protective systems consisted of biodegradable chitosans or polyethylenimine, which forms polyplexes when combined with DNAzymes. The polyplexes were characterized in terms of particle size, zeta potential, stability and degree of complexation. The screening revealed that the protective efficiency of the polyplexes depended on the polycation and the charge ratio (ξ). At a critical ξ ratio between 1.0 and 4.1 and at a maximal zeta potential, sufficient protection of the DNAzyme was achieved. The results of this study will be helpful for the development of a protective dermal drug delivery systems using polyplexes.


Asunto(s)
ADN Catalítico/metabolismo , Piel/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Hidrólisis , Microscopía Electrónica de Rastreo
3.
Int J Pharm ; 479(1): 150-8, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25541146

RESUMEN

RNA-cleaving DNAzymes are a potential novel class of nucleic acid-based active pharmaceutical ingredients (API). However, developing an appropriate drug delivery system (DDS) that achieves high bioavailability is challenging. Especially in a dermal application, DNAzymes have to overcome physiological barriers composed of penetration barriers and degrading enzymes. The focus of the present study was the development of a protective and penetration-enhanced dermal DDS that was tailor made for DNAzymes. DNAzyme Dz13 was used as a potential API for topical therapy against actinic keratosis. In the progress of development and selection, different preservatives, submicron emulsions (SMEs) and the physiological pH range were validated with respect to the API's integrity. A physicochemical stable SME of a pharmaceutical grade along with a high API integrity was achieved. Additionally, two developed protective systems, consisting of a liposomal formulation or chitosan-polyplexes, reduced the degradation of Dz13 in vitro. A combination of SME and polyplexes was finally validated at the skin and cellular level by in vitro model systems. Properties of penetration, degradation and distribution were determined. The result was enhanced skin penetration efficiency and increased cellular uptake with a high protective efficiency for DNAzymes due to the developed protective DDS.


Asunto(s)
ADN Catalítico/administración & dosificación , Sistemas de Liberación de Medicamentos , Administración Cutánea , Animales , Línea Celular , Quitosano/química , Citoplasma/metabolismo , ADN Catalítico/química , ADN Catalítico/farmacología , Estabilidad de Enzimas , Humanos , Técnicas In Vitro , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratosis Actínica , Liposomas , Piel/metabolismo , Absorción Cutánea , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA