Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biol Chem ; 298(3): 101625, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074430

RESUMEN

Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, ß-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in ß- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.


Asunto(s)
Herpesvirus Humano 3 , Membrana Nuclear , Proteínas Virales , Cristalografía por Rayos X , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Proteínas Virales/química , Proteínas Virales/genética , Liberación del Virus
2.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34355795

RESUMEN

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Ratones , SARS-CoV-2
3.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682988

RESUMEN

Based on the structure of a de novo designed miniprotein (LCB1) in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, we have generated and characterized truncated peptide variants of LCB1, which present only two of the three LCB1 helices, and which fully retained the virus neutralizing potency against different SARS-CoV-2 variants of concern (VOC). This antiviral activity was even 10-fold stronger for a cyclic variant of the two-helix peptides, as compared to the full-length peptide. Furthermore, the proteolytic stability of the cyclic peptide was substantially improved, rendering it a better potential candidate for SARS-CoV-2 therapy. In a more mechanistic approach, the peptides also served as tools to dissect the role of individual mutations in the RBD for the susceptibility of the resulting virus variants to neutralization by the peptides. As the peptides reported here were generated through chemical synthesis, rather than recombinant protein expression, they are amenable to further chemical modification, including the incorporation of a wide range of non-proteinogenic amino acids, with the aim to further stabilize the peptides against proteolytic degradation, as well as to improve the strength, as well the breadth, of their virus neutralizing capacity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Péptidos/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
4.
J Biol Chem ; 295(10): 3189-3201, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31980459

RESUMEN

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric basic structure of the nuclear egress complex (core NEC). These core NECs serve as a hexameric lattice-structured platform for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina- and membrane-rearranging functions (multicomponent NEC). Here, we report the X-ray structures of ß- and γ-herpesvirus core NECs obtained through an innovative recombinant expression strategy based on NEC-hook::NEC-groove protein fusion constructs. This approach yielded the first structure of γ-herpesviral core NEC, namely the 1.56 Å structure of Epstein-Barr virus (EBV) BFRF1-BFLF2, as well as an increased resolution 1.48 Å structure of human cytomegalovirus (HCMV) pUL50-pUL53. Detailed analysis of these structures revealed that the prominent hook segment is absolutely required for core NEC formation and contributes approximately 80% of the interaction surface of the globular domains of NEC proteins. Moreover, using HCMV::EBV hook domain swap constructs, computational prediction of the roles of individual hook residues for binding, and quantitative binding assays with synthetic peptides presenting the HCMV- and EBV-specific NEC hook sequences, we characterized the unique hook-into-groove NEC interaction at various levels. Although the overall physicochemical characteristics of the protein interfaces differ considerably in these ß- and γ-herpesvirus NECs, the binding free energy contributions of residues displayed from identical positions are similar. In summary, the results of our study reveal critical details of the molecular mechanism of herpesviral NEC interactions and highlight their potential as an antiviral drug target.


Asunto(s)
Betaherpesvirinae/metabolismo , Gammaherpesvirinae/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citomegalovirus/metabolismo , Células HeLa , Herpesvirus Humano 4/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Resonancia por Plasmón de Superficie , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Chembiochem ; 22(24): 3443-3451, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605595

RESUMEN

With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Péptidos/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/síntesis química , Inhibidores de Fusión de VIH/química , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Halogenación , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química
6.
J Proteome Res ; 19(2): 805-818, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31902209

RESUMEN

Nonenzymatic post-translational protein modifications (nePTMs) affect the nutritional, physiological, and technological properties of proteins in food and in vivo. In contrast to the usual targeted analyses, the present study determined nePTMs in processed milk in a truly untargeted proteomic approach. Thus, it was possible to determine to which extent known nePTM structures explain protein modifications in processed milk and to detect and identify novel products. The method combined ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with bioinformatic data analysis by the software XCMS. The nePTMs detected by untargeted profiling of a ß-lactoglobulin-lactose model were incorporated in a sensitive scheduled multiple reaction monitoring method to analyze these modifications in milk samples and to monitor their reaction kinetics during thermal treatment. Additionally, we identified the structures of unknown modifications. Lactosylation, carboxymethylation, formylation of lysine and N-terminus, glycation of arginine, oxidation of methionine, tryptophan, and cysteine, oxidative deamination of N-terminus, and deamidation of asparagine and glutamine were the most important reactions of ß-lactoglobulin during milk processing. The isomerization of aspartic acid was observed for the first time in milk products, and N-terminal 4-imidazolidinone was identified as a novel nePTM.


Asunto(s)
Proteínas de la Leche , Leche , Lactoglobulinas , Leche/metabolismo , Proteínas de la Leche/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
7.
Chembiochem ; 18(7): 647-653, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28125767

RESUMEN

The broadly neutralizing HIV-1 antibody b12 recognizes the CD4 binding site of the HIV-1 envelope glycoprotein gp120 and efficiently neutralizes HIV-1 infections in vitro and in vivo. Based on the 3D structure of a b12⋅gp120 complex, we have designed an assembled peptide (b12-M) that presents the parts of the three heavy-chain complementarity-determining regions (CDRs) of b12, which contain the contact sites of the antibody for gp120. This b12-mimetic peptide, as well as a truncated peptide presenting only two of the three heavy-chain CDRs of b12, were shown to recognize gp120 in a similar manner to b12, as well as to inhibit HIV-1 infection, demonstrating functional mimicry of b12 by the paratope mimetic peptides.


Asunto(s)
Fármacos Anti-VIH/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Péptidos/inmunología , Fármacos Anti-VIH/síntesis química , Sitios de Unión , Línea Celular , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Péptidos/síntesis química , Ingeniería de Proteínas
8.
BMC Microbiol ; 16(1): 201, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27590005

RESUMEN

BACKGROUND: Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. RESULTS: This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the antibodies reacted with non-phospho-CagA peptides and in accordance were able to recognize phosphotyrosine proteins in human cells. CONCLUSIONS: The results of this study disclose the various binding preferences of commercial anti-phosphotyrosine antibodies for phospho-EPIYA-motifs, and are valuable in the application for further characterization of CagA phosphorylation events during infection with H. pylori and risk prediction for gastric disease development.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/inmunología , Fosfotirosina/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Datos de Secuencia Molecular , Fosforilación , Fosfotirosina/aislamiento & purificación , Fosfotirosina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/metabolismo , Alineación de Secuencia , Transducción de Señal , Estómago/microbiología , Estómago/patología , Neoplasias Gástricas/microbiología , Sistemas de Secreción Tipo IV
9.
Chembiochem ; 16(13): 1855-1856, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26147884

RESUMEN

Proline makeover: Truncation and extensive chemical modification of a peptide ligand yielded a biologically active, cell-permeable, peptidomimetic, small-molecule inhibitor of a protein-protein interaction. A key step in this transformation was the replacement of a tetraproline motif by two conformationally constrained diproline units that retain the molecule's PPII helix.

10.
Chembiochem ; 16(3): 446-54, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25639621

RESUMEN

Contact between the human immunodeficiency virus (HIV-1) and its target cell is initiated by the interaction of viral gp120 with cellular CD4. An assembled peptide (CD4bs-M) that presents the CD4 binding site of gp120 was previously shown to inhibit the gp120-CD4 interaction. Here, we demonstrate that CD4bs-M selectively enhances infection of cells with HIV-1, whereas infection with herpes simplex virus remains largely unaffected. The effects of CD4bs-M variants containing D-amino acids, or prolines at selected positions, point to the importance of side chain orientation and spatial orientation of this fragment. Furthermore, CD4bs-M was shown to assemble into amyloid-like fibrils that capture HIV-1 particles, which likely contributes to the infection-enhancing effect. Beyond infection enhancement, CD4bs-M enabled HIV-1 infection of CD4-negative cells, suggesting that binding of the peptide to gp120 facilitates interaction of gp120 with coreceptors, which might in turn enhance HIV-1 entry.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/química , VIH-1/patogenicidad , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Chlorocebus aethiops , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Células HeLa/virología , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Células Vero/virología
11.
Bioorg Med Chem ; 23(14): 4050-5, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25801155

RESUMEN

The chemokine receptor CXCR4 belongs to the family of seven-transmembrane G-protein coupled receptors (GPCRs). It is activated by its natural ligand SDF-1α. In addition, CXCR4, along with CCR5, serve as coreceptors during HIV-1 entry into its target cell. Recently, we introduced a CXCR4 mimetic peptide, termed CX4-M1, which presents the three extracellular loops (ECLs) of the receptor. CX4-M1 was shown to selectively bind to gp120 of X4-tropic, that is, CXCR4 using, HIV-1, as well as to peptides that present the V3-loops of these gp120 proteins. Furthermore, CX4-M1 selectively inhibits infection of cells with X4-tropic HIV-1. We have now adapted the sequence of the ECLs presented by CX4-M1 to the recently published crystal structure of CXCR4. The binding behavior, as well as the effect on HIV-1 infection, of the resulting peptide (CX4-Mc) was very similar to CX4-M1, validating retrospectively the original design of CX4-M1. A peptide presenting the ECLs of CCR5 (CR5-M), on the other hand, did neither bind to gp120 from X4-tropic HIV-1, nor did it inhibit infection of cells with X4-tropic HIV-1. Furthermore, we could show that CX4-M1, as well as CX4-Mc, but not CR5-M, are selectively recognized by anti-CXCR4 antibodies, bind to SDF-1α, and also inhibit SDF-1α signaling, extending the scope of selective functional CXCR4 mimicry through CX4-M1.


Asunto(s)
VIH-1/efectos de los fármacos , Péptidos/farmacología , Receptores CXCR4/metabolismo , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Anticuerpos/inmunología , Anticuerpos/metabolismo , Línea Celular/efectos de los fármacos , Línea Celular/virología , Quimiocina CXCL12/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/patogenicidad , Humanos , Ligandos , Imitación Molecular , Pruebas de Neutralización , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Receptores CXCR4/inmunología
12.
J Pept Sci ; 21(9): 723-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26200472

RESUMEN

Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein-ligand interactions. Such mimics of protein binding sites can currently be generated through structure-based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin-2 (Fas) because the structure and function of this complex is well understood. Structure-based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE-specific peptide-Fas interaction.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Péptidos/química , Péptidos/síntesis química , Sitios de Unión , Humanos
13.
Org Biomol Chem ; 12(16): 2606-14, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24637609

RESUMEN

C3-Symmetric trimesic acid scaffolds, functionalized with bromoacetyl, aminooxyacetyl and azidoacetyl moieties, respectively, were synthesized and compared regarding their utility for the trivalent presentation of peptides using three different chemoselective ligation reactions, i.e. thioether and oxime formation, as well as the "click" reaction. The latter ligation method was then used to covalently stabilize the trimer of foldon, a 27 amino acid trimerization domain of bacteriophage T4 fibritin, by linking the three foldon monomers to the triazido-functionalized trimesic acid scaffold. This reaction dramatically enhanced the thermal stability of the trimer, while maintaining the correct fold, as demonstrated by CD spectroscopy and X-ray crystal structure analysis, respectively, of the foldon-scaffold conjugates.


Asunto(s)
Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/síntesis química , Proteínas Virales/química , Bacteriófago T4/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Pliegue de Proteína
14.
Front Immunol ; 15: 1344346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390320

RESUMEN

Introduction: Conformationally stabilized Env trimers have been developed as antigens for the induction of neutralizing antibodies against HIV-1. However, the non-glycosylated immunodominant base of these soluble antigens may compete with the neutralizing antibody response. This has prompted attempts to couple Env trimers to organic or inorganic nanoparticles with the base facing towards the carrier. Such a site-directed coupling could not only occlude the base of the trimer, but also enhance B cell activation by repetitive display. Methods: To explore the effect of an ordered display of HIV-1 Env on microspheres on the activation of Env-specific B cells we used Bind&Bite, a novel covalent coupling approach for conformationally sensitive antigens based on heterodimeric coiled-coil peptides. By engineering a trimeric HIV-1 Env protein with a basic 21-aa peptide (Peptide K) extension at the C-terminus, we were able to covalently biotinylate the antigen in a site-directed fashion using an acidic complementary peptide (Peptide E) bearing a reactive site and a biotin molecule. This allowed us to load our antigen onto streptavidin beads in an oriented manner. Results: Microspheres coated with HIV-1 Env through our Bind&Bite system showed i) enhanced binding by conformational anti-HIV Env broadly neutralizing antibodies (bNAbs), ii) reduced binding activity by antibodies directed towards the base of Env, iii) higher Env-specific B cell activation, and iv) were taken-up more efficiently after opsonization compared to beads presenting HIV-1 Env in an undirected orientation. Discussion: In comparison to site-directed biotinylation via the Avi-tag, Bind&Bite, offers greater flexibility with regard to alternative covalent protein modifications, allowing selective modification of multiple proteins via orthogonal coiled-coil peptide pairs. Thus, the Bind&Bite coupling approach via peptide K and peptide E described in this study offers a valuable tool for nanoparticle vaccine design where surface conjugation of correctly folded antigens is required.


Asunto(s)
Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Péptidos , Fagocitosis
15.
RSC Chem Biol ; 4(10): 794-803, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799587

RESUMEN

Ensuring site-selectivity in covalent chemical modification of proteins is one of the major challenges in chemical biology and related biomedical disciplines. Most current strategies either utilize the selectivity of proteases, or are based on reactions involving the thiol groups of cysteine residues. We have modified a pair of heterodimeric coiled-coil peptides to enable the selective covalent stabilization of the dimer without using enzymes or cysteine moieties. Fusion of one peptide to the protein of interest, in combination with linking the desired chemical modification to the complementary peptide, facilitates stable, regio-selective attachment of the chemical moiety to the protein, through the formation of the covalently stabilized coiled-coil. This ligation method, which is based on the formation of isoeptide and squaramide bonds, respectively, between the coiled-coil peptides, was successfully used to selectively modify the HIV-1 envelope glycoprotein. Covalent stabilization of the coiled-coil also facilitated truncation of the peptides by one heptad sequence. Furthermore, selective addressing of individual positions of the peptides enabled the generation of mutually selective coiled-coils. The established method, termed Bind&Bite, can be expected to be beneficial for a range of biotechnological and biomedical applications, in which chemical moieties need to be stably attached to proteins in a site-selective fashion.

16.
Biology (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372110

RESUMEN

PG16 is a broadly neutralizing antibody that binds to the gp120 subunit of the HIV-1 Env protein. The major interaction site is formed by the unusually long complementarity determining region (CDR) H3. The CDRH3 residue Tyr100H is known to represent a tyrosine sulfation site; however, this modification is not present in the experimental complex structure of PG16 with full-length HIV-1 Env. To investigate the role of sulfation for this complex, we modeled the sulfation of Tyr100H and compared the dynamics and energetics of the modified and unmodified complex by molecular dynamics simulations at the atomic level. Our results show that sulfation does not affect the overall conformation of CDRH3, but still enhances gp120 interactions both at the site of modification and for the neighboring residues. This stabilization affects not only protein-protein contacts, but also the interactions between PG16 and the gp120 glycan shield. Furthermore, we also investigated whether PG16-CDRH3 is a suitable template for the development of peptide mimetics. For a peptide spanning residues 93-105 of PG16, we obtained an experimental EC50 value of 3nm for the binding of gp120 to the peptide. This affinity can be enhanced by almost one order of magnitude by artificial disulfide bonding between residues 99 and 100F. In contrast, any truncation results in significantly lower affinity, suggesting that the entire peptide segment is involved in gp120 recognition. Given their high affinity, it should be possible to further optimize the PG16-derived peptides as potential inhibitors of HIV invasion.

17.
J Gen Virol ; 93(Pt 8): 1756-1768, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22552943

RESUMEN

The multifunctional protein kinase pUL97 of human cytomegalovirus (HCMV) strongly determines the efficiency of virus replication. Previously, the existence of two pUL97 isoforms that arise from alternative translational initiation and show a predominant nuclear localization was described. Two bipartite nuclear localization sequences, NLS1 and NLS2, were identified in the N terminus of the large isoform, whilst the small isoform exclusively contained NLS2. The current study found the following: (i) pUL97 nuclear localization in HCMV-infected primary fibroblasts showed accumulations in virus replication centres and other nuclear sections; (ii) in a quantitative evaluation system for NLS activity, the large isoform showed higher efficiency of nuclear translocation than the small isoform; (iii) NLS1 was mapped to aa 6-35 and NLS2 to aa 190-213; (iv) using surface plasmon resonance spectroscopy, the binding of both NLS1 and NLS2 to human importin-α was demonstrated, stressing the importance of individual arginine residues in the bipartite consensus motifs; (v) nuclear magnetic resonance spectroscopy of pUL97 peptides confirmed an earlier statement about the functional requirement of NLS1 embedding into an intact α-helical structure; and (vi) a bioinformatics investigation of the solvent-accessible surface suggested a high accessibility of NLS1 and an isoform-specific, variable accessibility of NLS2 for interaction with importin-α. Thus, the nucleocytoplasmic transport mechanism of the isoforms appeared to be differentially regulated, and this may have consequences for isoform-dependent functions of pUL97 during virus replication.


Asunto(s)
Citomegalovirus/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Señales de Localización Nuclear , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Simulación por Computador , Citomegalovirus/genética , Fibroblastos/metabolismo , Humanos , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , alfa Carioferinas/genética
18.
Bioorg Med Chem Lett ; 22(19): 6099-102, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22939235

RESUMEN

Different molecular mechanisms of the two broadly neutralizing anti-HIV-1 antibodies b12 and VRC01, as evidenced by their converse effects on the interaction of HIV-1 envelope glycoprotein gp120 with cellular coreceptors, were demonstrated using a synthetic CXCR4 mimetic peptide (CX4-M1) as coreceptor surrogate. While the interaction of gp120 with CX4-M1 was distinctly enhanced by VRC01, b12 was shown to have the contrary effect, and also to inhibit the VRC01-induced enhancement of gp120 binding to the CXCR4 mimetic peptide.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , VIH/inmunología , Imitación Molecular/inmunología , Péptidos/inmunología , Receptores CXCR4/inmunología , Anticuerpos Anti-VIH/química , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Modelos Moleculares , Péptidos/síntesis química , Péptidos/química
19.
Beilstein J Org Chem ; 8: 1858-66, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209523

RESUMEN

Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide-gp120 complexes. The specificity of the peptide-gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids.

20.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36145260

RESUMEN

The replication of human cytomegalovirus (HCMV) involves a process termed nuclear egress, which enables translocation of newly formed viral capsids from the nucleus into the cytoplasm. The HCMV core nuclear egress complex (core NEC), a heterodimer of viral proteins pUL50 and pUL53, is therefore considered a promising target for new antiviral drugs. We have recently shown that a 29-mer peptide presenting an N-terminal alpha-helical hook-like segment of pUL53, through which pUL53 interacts with pUL50, binds to pUL50 with high affinity, and inhibits the pUL50-pUL53 interaction in vitro. Here, we show that this peptide is also able to interfere with HCMV infection of cells, as well as with core NEC formation in HCMV-infected cells. As the target of the peptide, i.e., the pUL50-pUL53 interaction, is localized at the inner nuclear membrane of the cell, the peptide had to be equipped with translocation moieties that facilitate peptide uptake into the cell and the nucleus, respectively. For the resulting fusion peptide (NLS-CPP-Hook), specific cellular and nuclear uptake into HFF cells, as well as inhibition of infection with HCMV, could be demonstrated, further substantiating the HCMV core NEC as a potential antiviral target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA