Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cereb Cortex ; 33(23): 11354-11372, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37851709

RESUMEN

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.


Asunto(s)
Neuronas , Corteza Somatosensorial , Ratones , Animales , Corteza Somatosensorial/fisiología , Neuronas/fisiología , Dendritas/fisiología , Células Piramidales/fisiología , Interneuronas/fisiología
2.
J Cell Sci ; 134(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766183

RESUMEN

Branches are critical for neuron function, generating the morphological complexity required for functional networks. They emerge from different, well-described, cytoskeletal precursor structures that elongate to branches. While branches are thought to be maintained by shared cytoskeletal regulators, our data from mouse hippocampal neurons indicate that the precursor structures trigger alternative branch maintenance mechanisms with differing stabilities. Whereas branches originating from lamellipodia or growth cone splitting events collapse soon after formation, branches emerging from filopodia persist. Furthermore, compared to other developing neurites, axons stabilise all branches and preferentially initiate branches from filopodia. These differences explain the altered stability of branches we observe in neurons lacking the plasma membrane protein phospholipid phosphatase-related protein 3 (PLPPR3, also known as PRG2) and in neurons treated with netrin-1. Rather than altering branch stability directly, PLPPR3 and netrin-1 boost a 'filopodia branch programme' on axons, thereby indirectly initiating more long-lived branches. In summary, we propose that studies on branching should distinguish overall stabilising effects from effects on precursor types, ideally using multifactorial statistical models, as exemplified in this study.


Asunto(s)
Conos de Crecimiento , Neuronas , Animales , Axones , Células Cultivadas , Ratones , Neuritas
3.
Brain ; 145(10): 3608-3621, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35603900

RESUMEN

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focused on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.


Asunto(s)
Fosfohidrolasa PTEN , Treonina , Animales , Ratones , Masculino , Treonina/metabolismo , Tensinas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Neuronas/metabolismo , Alanina/metabolismo , Lípidos
5.
Proc Natl Acad Sci U S A ; 113(41): 11615-11620, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671655

RESUMEN

The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.


Asunto(s)
Canales de Calcio/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Potenciales de Acción , Animales , Calcio/metabolismo , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Eliminación de Gen , Expresión Génica , Marcación de Gen , Sitios Genéticos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Transporte de Proteínas , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
6.
J Biol Chem ; 291(19): 10239-51, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26945062

RESUMEN

The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1-3 kinases are specifically activated by two phosphorylation events on residues Thr(308) and Ser(473) upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser(473) and Thr(308) phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser(473) and Thr(308) phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser(473)-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons.


Asunto(s)
Encéfalo/metabolismo , Embrión de Mamíferos/metabolismo , Focalización Isoeléctrica/métodos , Neuroblastoma/metabolismo , Neuronas/metabolismo , Fosfohidrolasa PTEN/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adulto , Animales , Western Blotting , Encéfalo/citología , Células Cultivadas , Embrión de Mamíferos/citología , Humanos , Ratones Noqueados , Neuroblastoma/patología , Neuronas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Isoformas de Proteínas , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 111(36): 13205-10, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157163

RESUMEN

Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos Multiproteicos/metabolismo , Neuritas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/citología , Hipocampo/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Modelos Biológicos , Morfogénesis , Ubiquitina-Proteína Ligasas Nedd4 , Poliubiquitina/metabolismo , Biosíntesis de Proteínas , Ubiquitinación
8.
J Med Genet ; 52(2): 128-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527629

RESUMEN

BACKGROUND: Germline mutations in the phosphatase PTEN are associated with diverse human pathologies, including tumour susceptibility, developmental abnormalities and autism, but any genotype-phenotype relationships are poorly understood. METHODS: We have studied the functional consequences of seven PTEN mutations identified in patients diagnosed with autism and macrocephaly and five mutations from severe tumour bearing sufferers of PTEN hamartoma tumour syndrome (PHTS). RESULTS: All seven autism-associated PTEN mutants investigated retained the ability to suppress cellular AKT signalling, although five were highly unstable. Observed effects on AKT also correlated with the ability to suppress soma size and the length and density of dendritic spines in primary neurons. Conversely, all five PTEN mutations from severe cases of PHTS appeared to directly and strongly disrupt the ability to inhibit AKT signalling. CONCLUSIONS: Our work implies that alleles causing incomplete loss of PTEN function are more commonly linked to autism than to severe PHTS cases.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Síndrome de Hamartoma Múltiple/genética , Patrón de Herencia/genética , Mutación Missense/genética , Fosfohidrolasa PTEN/genética , Trastorno Autístico/enzimología , Biocatálisis , Células Cultivadas , Síndrome de Hamartoma Múltiple/enzimología , Humanos , Neuronas/metabolismo , Fosfohidrolasa PTEN/química , Estabilidad Proteica
9.
Neuroscience ; 551: 333-344, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838980

RESUMEN

Brain function emerges from a highly complex network of specialized cells that are interlinked by billions of synapses. The synaptic connectivity between neurons is established between the elongated processes of their axons and dendrites or, together, neurites. To establish these connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns covering extensive distances and connecting with thousands of other neurons. The outgrowth and branching of neurites are tightly controlled during development and are a commonly used functional readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy images, however, is very time intensive and prone to bias. Most automated analyses of neurons rely on reconstruction of the neuron as a whole without a semantic analysis of each neurite. A fully-automated classification of all neurites still remains unavailable in open-source software. Here we present a standalone, GUI-based software for batch-quantification of neuronal morphology in two-dimensional fluorescence micrographs of cultured neurons with minimal requirements for user interaction. Single neurons are first reconstructed into binarized images using a Hessian-based segmentation algorithm to detect thin neurite structures combined with intensity- and shape-based reconstruction of the cell body. Neurites are then classified into axon, dendrites and their branches of increasing order using a geodesic distance transform of the cell skeleton. The software was benchmarked against a published dataset and reproduced the phenotype observed after manual annotation. Our tool promises accelerated and improved morphometric studies of neuronal morphology by allowing for consistent and automated analysis of large datasets.

10.
J Neurosci ; 31(16): 6174-87, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508241

RESUMEN

Cortical interneurons, generated predominantly in the medial ganglionic eminence, migrate around and avoid the developing striatum in the subpallium en route to the cortex. This is attributable to the chemorepulsive cues of class 3 semaphorins expressed in the striatal mantle and acting through neuropilin (Nrp1 and Nrp2) receptors expressed in these cells. Cortical interneurons also express Robo receptors, and we show here that in mice lacking Robo1, but not Robo2, these cells migrate aberrantly through the striatum. In vitro experiments demonstrated that interneurons lacking Robo1 function are significantly less responsive to the effects of semaphorins. Failure to respond to semaphorin appears to be attributable to a reduction in Nrp1 and PlexinA1 receptors within these cells. Biochemical studies further demonstrated that Robo1 binds directly to Nrp1, but not to semaphorins, and this interaction is mediated by a region contained within its first two Ig domains. Thus, we show for the first time that Robo1 interacts with Nrp1 to modulate semaphorin signaling in the developing forebrain and direct the migration of interneurons through the subpallium and into the cortex.


Asunto(s)
Corteza Cerebral/metabolismo , Quimiotaxis/fisiología , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/metabolismo , Receptores Inmunológicos/metabolismo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Línea Celular , Células Cultivadas , Corteza Cerebral/citología , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Interneuronas/citología , Ratones , Ratones Noqueados , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Roundabout
11.
Front Mol Neurosci ; 15: 984655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187351

RESUMEN

Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.

12.
Curr Top Microbiol Immunol ; 346: 245-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20582530

RESUMEN

Our understanding of the mechanisms involved in the formation of the complex arrangement of neurons and their interconnections within the brain has made significant progress in recent years. Current research has uncovered a network of intracellular signaling events that provide precise coordination of a diverse array of cellular responses, including trafficking events, cytoskeletal remodeling, gene transcription, and protein ubiquitination and translation. This chapter considers the specific cellular responses controlled by the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is instructive with regard to a number of important steps involved in the development of the brain. These range from the mediation of extrinsic signals - such as growth factors, axon guidance cues, and extracellular matrix components - to intrinsic effectors, such as downstream signaling components that act, for example, at the translation level. PI3K signaling is, consequently, at the heart of controlling neuronal migration and neuronal morphogenesis, as well as dendrite and synapse development. Many neurobehavioral disorders arise as a consequence of subtle developmental abnormalities. Unsurprisingly, therefore, aberrant PI3K signaling has been indicated by many studies to be a contributing factor to the pathophysiology of disorders such as schizophrenia and autism. In this chapter, we will focus on the specific, yet divergent, cellular processes that are achieved through PI3K signaling in neurons and are key to brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Neuronas/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/fisiología , Animales , Trastorno Autístico/etiología , Movimiento Celular , Dendritas/fisiología , Humanos , Esquizofrenia/etiología
13.
Sci Rep ; 11(1): 8662, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883605

RESUMEN

The actin binding protein drebrin plays a key role in dendritic spine formation and synaptic plasticity. Decreased drebrin protein levels have been observed in temporal lobe epilepsy, suggesting the involvement of drebrin in the disease. Here we investigated the effect of drebrin knockout on physiological and pathophysiological neuronal network activities in mice by inducing gamma oscillations, involved in higher cognitive functions, and by analyzing pathophysiological epileptiform activity. We found that loss of drebrin increased the emergence of spontaneous gamma oscillations suggesting an increase in neuronal excitability when drebrin is absent. Further analysis showed that although the kainate-induced hippocampal gamma oscillations were unchanged in drebrin deficient mice, seizure like events measured in the entorhinal cortex appeared earlier and more frequently. The results suggest that while drebrin is not essential for normal physiological network activity, it helps to protect against the formation of seizure like activities during pathological conditions. The data indicate that targeting drebrin function could potentially be a preventive or therapeutic strategy for epilepsy treatment.


Asunto(s)
Corteza Entorrinal/fisiología , Neuropéptidos/fisiología , Convulsiones/metabolismo , Animales , Western Blotting , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones Noqueados , Red Nerviosa/fisiología , Ratas , Convulsiones/fisiopatología
14.
Nat Commun ; 12(1): 1490, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674568

RESUMEN

The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as ß1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.


Asunto(s)
Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Cicatriz/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/patología , Movimiento Celular , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Gliosis/metabolismo , Gliosis/patología , Ratones , Ratones Noqueados , Neuroprotección , Transcriptoma , Proteínas de Unión al GTP rab/metabolismo
16.
Neurosci Insights ; 15: 2633105520959056, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974612

RESUMEN

PTEN is a powerful regulator of neuronal growth. It globally suppresses axon extension and branching during both nervous system development and regeneration, by antagonizing growth-promoting PI3K/PI(3,4,5)P3 signaling. We recently identified that the transmembrane protein PRG2/LPPR3 functions as a modulator of PTEN function during axon morphogenesis. Our work demonstrates that through inhibition of PTEN activity, PRG2 stabilizes membrane PI(3,4,5)P3. In turn, PRG2 deficiency attenuates the formation of branches in a PTEN-dependent manner, albeit without affecting the overall growth capacity of extending axons. Thus, PRG2 is poised to temporally and locally relieve growth suppression mediated by PTEN in neurons and, in effect, to redirect growth specifically to axonal branches. In this commentary, we discuss potential implications and unresolved questions regarding the regulation of axonal PTEN in neurons. Given their widespread implication during neuronal development and regeneration, identification of mechanisms that confer spatiotemporal control of PTEN may unveil new approaches to reprogram PI3K signaling in neurodevelopmental disorders and regeneration research.

17.
Cell Rep ; 30(10): 3492-3505.e5, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160552

RESUMEN

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices. We find that L6b receives its strongest excitatory input from intracortical long-range projection neurons, including those in the contralateral hemisphere. In contrast, local intracortical input and thalamocortical input were significantly weaker. Moreover, our data suggest that L6b receives far less thalamocortical input than other cortical layers. L6b was most strongly inhibited by PV and SST interneurons. This study shows that L6b integrates long-range intracortical information and is not part of the traditional thalamocortical loop.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Animales , Ratones Endogámicos C57BL , Modelos Neurológicos , Sinapsis/fisiología , Tálamo/fisiología
18.
EMBO Mol Med ; 12(8): e11674, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32558386

RESUMEN

Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.


Asunto(s)
Axones , Fosfatidilinositol 3-Quinasas , Adulto , Animales , Sistema Nervioso Central , Humanos , Ratones , Regeneración Nerviosa , Neuronas , Ratas
19.
J Cell Biol ; 157(2): 211-7, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11956225

RESUMEN

Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase that has been implicated in several aspects in embryonic development and several growth factor signaling cascades. We now report that an inactive phosphorylated pool of the enzyme colocalizes with F-actin in both neuronal and nonneuronal cells. Semaphorin 3A (Sema 3A), a molecule that inhibits axonal growth, activates GSK-3 at the leading edge of neuronal growth cones and in Sema 3A-responsive human breast cancer cells, suggesting that GSK-3 activity might play a role in coupling Sema 3A signaling to changes in cell motility. We show that three different GSK-3 antagonists (LiCl, SB-216763, and SB-415286) can inhibit the growth cone collapse response induced by Sema 3A. These studies reveal a novel compartmentalization of inactive GSK-3 in cells and demonstrate for the first time a requirement for GSK-3 activity in the Sema 3A signal transduction pathway.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Glicoproteínas/metabolismo , Conos de Crecimiento/enzimología , Transducción de Señal , Actinas/metabolismo , Animales , Western Blotting , Células COS , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Activación Enzimática/efectos de los fármacos , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Glicoproteínas/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Unión Proteica , Semaforina-3A , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
20.
Artículo en Inglés | MEDLINE | ID: mdl-31427284

RESUMEN

Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA