Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Cancer ; 15: 436, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016476

RESUMEN

BACKGROUND: Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. METHODS: Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. RESULTS: Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. CONCLUSIONS: These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Proteína Adaptadora GRB2/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cetuximab/farmacología , Evaluación Preclínica de Medicamentos , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal
2.
J Immunol ; 191(10): 5256-67, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24127555

RESUMEN

KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56(high) subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cell-surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0 domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4), and induces differential localization of KIR2DL4 to rab5(+) and rab7(+) endosomes, thus leading to downregulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS proteoglycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking.


Asunto(s)
Heparitina Sulfato/metabolismo , Células Asesinas Naturales/inmunología , Receptores KIR2DL4/metabolismo , Sulfotransferasas/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Células CHO , Línea Celular , Cricetulus , Endocitosis , Células HEK293 , Heparina/metabolismo , Humanos , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Receptores KIR2DL4/genética , Receptores KIR2DL4/inmunología , Transducción de Señal/inmunología , Sindecano-4/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
3.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712276

RESUMEN

Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.

4.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745612

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.

5.
J Biol Chem ; 285(1): 422-33, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19880521

RESUMEN

Epigenetic silencing is mediated by families of factors that place, remove, read, and transmit repressive histone and DNA methylation marks on chromatin. How the roles for these functionally diverse factors are specified and integrated is the subject of intense study. To address these questions, HeLa cells harboring epigenetically silent green fluorescent protein reporter genes were interrogated with a small interference RNA library targeting 200 predicted epigenetic regulators, including potential activators, silencers, chromatin remodelers, and ancillary factors. Using this approach, individual, or combinatorial requirements for specific epigenetic silencing factors could be detected by measuring green fluorescent protein reactivation after small interference RNA-based factor knockdown. In our analyses, we identified a specific subset of 15 epigenetic factors that are candidates for participation in a functional epigenetic silencing network in human cells. These factors include histone deacetylase 1, de novo DNA methyltransferase 3A, components of the polycomb PRC1 complex (RING1 and HPH2), and the histone lysine methyltransferases KMT1E and KMT5C. Roles were also detected for two TRIM protein family members, the cohesin component Rad21, and the histone chaperone CHAF1A (CAF-1 p150). Remarkably, combinatorial knockdown of factors was not required for reactivation, indicating little functional redundancy. Consistent with this interpretation, knockdown of either KMT1E or CHAF1A resulted in a loss of multiple histone-repressive marks and concomitant gain of activation marks on the promoter during reactivation. These results reveal how functionally diverse factors may cooperate to maintain gene silencing during normal development or in disease. Furthermore, the findings suggest an avenue for discovery of new targets for epigenetic therapies.


Asunto(s)
Silenciador del Gen , Proteínas Nucleares/metabolismo , Azacitidina/farmacología , Separación Celular , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Células Clonales , Citomegalovirus/genética , ADN Metiltransferasa 3A , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Histonas/metabolismo , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Fase S/efectos de los fármacos , Factores de Transcripción
6.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33320833

RESUMEN

Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/administración & dosificación , Pirimidinonas/administración & dosificación , Pirroles/administración & dosificación , Triazinas/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Resistencia a Antineoplásicos/genética , Femenino , Tumores del Estroma Gastrointestinal/patología , Humanos , Masculino , Ratones , Ratones SCID , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012873

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) affect more than 800,000 people annually worldwide, causing over 15,000 deaths in the US. Among HNSCC cancers, human papillomavirus (HPV)-negative HNSCC has the worst outcome, motivating efforts to improve therapy for this disease. The most common mutational events in HPV-negative HNSCC are inactivation of the tumor suppressors TP53 (>85%) and CDKN2A (>57%), which significantly impairs G1/S checkpoints, causing reliance on other cell cycle checkpoints to repair ongoing replication damage. We evaluated a panel of cell cycle-targeting clinical agents in a group of HNSCC cell lines to identify a subset of drugs with single-agent activity in reducing cell viability. Subsequent analyses demonstrated potent combination activity between the CHK1/2 inhibitor LY2606268 (prexasertib), which eliminates a G2 checkpoint, and the WEE1 inhibitor AZD1775 (adavosertib), which promotes M-phase entry, in induction of DNA damage, mitotic catastrophe, and apoptosis, and reduction of anchorage independent growth and clonogenic capacity. These phenotypes were accompanied by more significantly reduced activation of CHK1 and its paralog CHK2, and enhanced CDK1 activation, eliminating breaks on the mitotic entry of cells with DNA damage. These data suggest the potential value of dual inhibition of CHK1 and WEE1 in tumors with compromised G1/S checkpoints.

8.
Front Genet ; 10: 75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809247

RESUMEN

The primary monocilium, or cilium, is a single antenna-like organelle that protrudes from the surface of most mammalian cell types, and serves as a signaling hub. Mutations of cilia-associated genes result in severe genetic disorders termed ciliopathies. Among these, the most common is autosomal dominant polycystic kidney disease (ADPKD); less common genetic diseases include Bardet-Biedl syndrome, Joubert syndrome, nephronophthisis, and others. Important signaling cascades with receptor systems localized exclusively or in part at cilia include Sonic Hedgehog (SHH), platelet derived growth factor alpha (PDGFRα), WNTs, polycystins, and others. Changes in ciliation during development or in pathological conditions such as cancer impacts signaling by these proteins. Notably, ciliation status of cells is coupled closely to the cell cycle, with cilia protruding in quiescent (G0) or early G1 cells, declining in S/G2, and absent in M phase, and has been proposed to contribute to cell cycle regulation. Because of this complex biology, the elaborate machinery regulating ciliary assembly and disassembly receives input from many cellular proteins relevant to cell cycle control, development, and oncogenic transformation, making study of genetic factors and drugs influencing ciliation of high interest. One of the most effective tools to investigate the dynamics of the cilia under different conditions is the imaging of live cells. However, developing assays to observe the primary cilium in real time can be challenging, and requires a consideration of multiple details related to the cilia biology. With the dual goals of identifying small molecules that may have beneficial activity through action on human diseases, and of identifying ciliary activities of existing agents that are in common use or development, we here describe creation and evaluation of three autofluorescent cell lines derived from the immortalized retinal pigmented epithelium parental cell line hTERT-RPE1. These cell lines stably express the ciliary-targeted fluorescent proteins L13-Arl13bGFP, pEGFP-mSmo, and tdTomato-MCHR1-N-10. We then describe methods for use of these cell lines in high throughput screening of libraries of small molecule compounds to identify positive and negative regulators of ciliary disassembly.

9.
Clin Cancer Res ; 25(13): 4179-4193, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867219

RESUMEN

PURPOSE: For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN: We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS: We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS: These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.


Asunto(s)
Cilios/efectos de los fármacos , Cilios/metabolismo , Descubrimiento de Drogas , Animales , Biomarcadores , Línea Celular , Susceptibilidad a Enfermedades , Clorhidrato de Erlotinib/farmacología , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Renales Quísticas/etiología , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones , Modelos Biológicos , Comunicación Paracrina/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Sunitinib/farmacología
10.
Sci Rep ; 9(1): 3632, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842471

RESUMEN

After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Cetoconazol/farmacología , Lipoilación , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Técnicas Químicas Combinatorias , Inhibidores del Citocromo P-450 CYP3A/farmacología , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA