Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 31(4): 1057-1075, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862998

RESUMEN

Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long been associated with environmental variation in wild populations. New genomic tools provide the opportunity to examine the role of these structural variants in shaping adaptive differences within and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), variations in chromosomal rearrangements exist across the species natural range, yet the role and importance of these structural variants in maintaining adaptive differences among wild populations remains poorly understood. We genotyped Atlantic Salmon (n = 1429) from 26 populations within a highly genetically structured region of southern Newfoundland, Canada with a 220K SNP array. Multivariate analysis, across two independent years, consistently identified variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor influencing population structure in the region. Redundancy analysis suggested that variation in the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. Our analyses suggest environmentally mediated selection acting on standing genetic variation in genomic architecture introduced through secondary contact may underpin fine-scale local adaptation in Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance of chromosomal structural variation as a driver of contemporary adaptive divergence.


Asunto(s)
Salmo salar , Animales , Cromosomas/genética , Genoma , Genómica , Genotipo , Salmo salar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA