Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 18(2): 358-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25627339

RESUMEN

Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cianobacterias/genética , Metagenómica , Ficobilisomas/metabolismo , Virus/genética , Archaea/genética , Secuencia de Bases , Ecología , Genoma Bacteriano/genética , Genoma Viral/genética , Lagos/microbiología , Oxígeno/metabolismo , Filogenia , Plásmidos , Análisis de Secuencia de ADN
2.
Appl Environ Microbiol ; 79(4): 1191-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23220961

RESUMEN

Future rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


Asunto(s)
Actinobacteria/metabolismo , Carbono/metabolismo , Hongos/metabolismo , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Actinobacteria/genética , Biodiversidad , Hongos/genética , Variación Genética , Análisis por Micromatrices
3.
Ecol Evol ; 2(3): 538-49, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22822433

RESUMEN

It is uncertain whether the same ecological forces that structure plant and animal communities also shape microbial communities, especially those residing in soil. We sought to uncover the relative importance of present-day environmental characteristics, climatic variation, and historical contingencies in shaping soil actinobacterial communities in a long-term chronosequence. Actinobacteria communities were characterized in surface soil samples from four replicate forest stands with nearly identical edaphic and ecological properties, which range from 9500 to 14,000 years following glacial retreat in Michigan. Terminal restriction fragment length polymorphism (TRFLP) profiles and clone libraries of the actinobacterial 16S rRNA gene were constructed in each site for phenetic and phylogenetic analysis to determine whether dispersal limitation occurred following glacial retreat, or if community composition was determined by environmental heterogeneity. At every level of examination, actinobacterial community composition most closely correlated with distance, a surrogate for time, than with biogeochemical, plant community, or climatic characteristics. Despite correlation with leaf litter C:N and annual temperature, the significant and consistent relationship of biological communities with time since glacial retreat provides evidence that dispersal limitation is an ecological force structuring actinobacterial communities in soil over long periods of time.

4.
PLoS One ; 6(6): e20421, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21701691

RESUMEN

High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 2-4 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community.


Asunto(s)
Ascomicetos/genética , Basidiomycota/genética , Proteínas Fúngicas/genética , Nitrógeno , Árboles/microbiología , Ascomicetos/clasificación , Basidiomycota/clasificación , ADN Ribosómico/genética , Proteínas Fúngicas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA