RESUMEN
Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.
Asunto(s)
Médula Ósea , Leucemia Mielógena Crónica BCR-ABL Positiva , Animales , Ratones , Médula Ósea/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Quimiocinas CXC/uso terapéutico , Citocinas/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de SeñalRESUMEN
Impairment of normal hematopoiesis and leukemia progression are 2 well-linked processes during leukemia development and are controlled by the bone marrow (BM) niche. Extracellular matrix proteins, including laminin, are important BM niche components. However, their role in hematopoiesis regeneration and leukemia is unknown. Laminin α4 (Lama4), a major receptor-binding chain of several laminins, is altered in BM niches in mice with acute myeloid leukemia (AML). So far, the impact of Lama4 on leukemia progression remains unknown. We here report that Lama4 deletion in mice resulted in impaired hematopoiesis regeneration following irradiation-induced stress, which is accompanied by altered BM niche composition and inflammation. Importantly, in a transplantation-induced MLL-AF9 AML mouse model, we demonstrate accelerated AML progression and relapse in Lama4-/- mice. Upon AML exposure, Lama4-/- mesenchymal stem cells (MSCs) exhibited dramatic molecular alterations, including upregulation of inflammatory cytokines that favor AML growth. Lama4-/- MSCs displayed increased antioxidant activities and promoted AML stem cell proliferation and chemoresistance to cytarabine, which was accompanied by increased mitochondrial transfer from the MSCs to AML cells and reduced reactive oxygen species in AML cells in vitro. Similarly, we detected lower levels of reactive oxygen species in AML cells from Lama4-/- mice post-cytarabine treatment. Notably, LAMA4 inhibition or knockdown in human MSCs promoted human AML cell proliferation and chemoprotection. Together, our study for the first time demonstrates the critical role of Lama4 in impeding AML progression and chemoresistance. Targeting Lama4 signaling pathways may offer potential new therapeutic options for AML.
Asunto(s)
Laminina , Leucemia Mieloide Aguda , Animales , Citarabina/uso terapéutico , Resistencia a Antineoplásicos , Hematopoyesis/genética , Humanos , Laminina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Especies Reactivas de OxígenoRESUMEN
Tyrosine kinase inhibitors targeting the BCR-ABL oncoprotein in chronic myeloid leukemia (CML) are remarkably effective inducing deep molecular remission in most patients. However, they are less effective to eradicate the leukemic stem cells (LSC), resulting in disease persistence. Therefore, there is great need to develop novel therapeutic strategies to specifically target the LSC. In an experimental mouse CML model system, the leukotriene pathway, and specifically, the expression ALOX5, encoding 5-lipoxygenase (5-LO), has been reported as a critical regulator of the LSC. Based on these results, the 5-LO inhibitor zileuton has been introduced in clinical trials as a therapeutic option to target the LSC although its effect on primary human CML LSC has not been studied. We have here by using multiplex single cell PCR analyzed the expression of the mediators of the leukotriene pathway in bone marrow (BM) BCR-ABL+CD34+CD38- cells at diagnosis, and found low or undetectable expression of ALOX5. In line with this, zileuton did not exert significant overall growth inhibition in the long-term culture-initiating cell (LTC-IC) and colony (CFU-C) assays of BM CD34+CD38- cells from 7 CML patients. The majority of the single leukemic BCR-ABL+CD34+CD38- cells expressed cysteinyl leukotriene receptors CYSLT1 and CYSLT2. However, montelukast, an inhibitor of CYSLT1, also failed to significantly suppress CFU-C and LTC-IC growth. These findings indicate that targeting ALOX5 or CYSLT1 signaling with leukotriene antagonists, introduced into the clinical practice primarily as prophylaxis and treatment for asthma, may not be a promising pharmacological strategy to eradicate persisting LSC in CML patients.
Asunto(s)
ADP-Ribosil Ciclasa 1/análisis , Antígenos CD34/análisis , Araquidonato 5-Lipooxigenasa/inmunología , Células de la Médula Ósea/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/patología , Receptores de Leucotrienos/inmunología , ADP-Ribosil Ciclasa 1/inmunología , Adulto , Antígenos CD34/inmunología , Células de la Médula Ósea/inmunología , Proliferación Celular , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Células Madre Neoplásicas/inmunología , Transducción de Señal , Células Tumorales CultivadasRESUMEN
Clinical management guidelines on malignant disorders are generally based on data from clinical trials with selected patient cohorts. In Sweden, more than 95% of all patients diagnosed with chronic myeloid leukemia (CML) are reported to the national CML registry, providing unique possibilities to compile population-based information. This report is based on registry data from 2002 to 2010, when a total of 779 patients (425 men, 354 women; median age, 60 years) were diagnosed with CML (93% chronic, 5% accelerated, and 2% blastic phase) corresponding to an annual incidence of 0.9/100,000. In 2002, approximately half of the patients received a tyrosine kinase inhibitor as initial therapy, a proportion that increased to 94% for younger (<70 years) and 79% for older (>80 years) patients during 2007-2009. With a median follow-up of 61 months, the relative survival at 5 years was close to 1.0 for patients younger than 60 years and 0.9 for those aged 60 to 80 years, but only 0.6 for those older than 80 years. At 12 months, 3% had progressed to accelerated or blastic phase. Sokal, but not European Treatment and Outcome Study, high-risk scores were significantly linked to inferior overall and relative survival. Patients living in university vs nonuniversity catchment areas more often received tyrosine kinase inhibitors up front but showed comparable survival.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Sistema de Registros/estadística & datos numéricos , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Masculino , Persona de Mediana Edad , Pronóstico , Factores Sexuales , Tasa de Supervivencia , Suecia/epidemiología , Adulto JovenRESUMEN
Human hematopoietic stem cells reside in the CD34+CD38-CD90+ population in cord blood and bone marrow. However, this cell fraction is heterogeneous, and the phenotype of the rare primitive stem cells remains poorly defined. We here report that primitive cord blood CD34+CD38-CD90+ stem cells, with the ability to reconstitute NOD/SCID-IL2Rγ(c) null (NSG) mice long-term, at 24 weeks after transplantation, can be prospectively isolated at an increased purity by using integrin α2 receptor as an additional stem cell marker. Using a limiting dilution transplantation assay, we found a highly significant enrichment of multilineage reconstituting stem cells in the CD34+CD38-CD90+ cell fraction expressing the integrin α2 receptor, with a frequency of 1/29 cells, as compared to a frequency of 1/157 in the corresponding integrin α2- cells. In line with this, long-term reconstituting stem cells within the cord blood CD34+CD38- cell population were significantly enriched in the integrin α2+ fraction, while stem cells and progenitors reconstituting short-term, at 8-12 weeks, were heterogeneous in integrin α2 expression. Global gene expression profiling revealed that the lineage-marker negative (Lin-) CD34+CD38-CD90+CD45RA- integrin α2+ cell population was molecularly distinct from the integrin α2- cell population and the more mature Lin-CD34+CD38-CD90-CD45RA- cell population. Our findings identify integrin α2 as a novel stem cell marker, which improves prospective isolation of the primitive human hematopoietic stem cells within the CD34+CD38-CD90+ cell population for experimental and therapeutic stem cell applications.
Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Sangre Fetal/metabolismo , Expresión Génica/inmunología , Integrina alfa2/genética , Subunidad gamma Común de Receptores de Interleucina/genética , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Antígenos CD34/genética , Antígenos CD34/inmunología , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Femenino , Sangre Fetal/citología , Sangre Fetal/inmunología , Supervivencia de Injerto , Humanos , Inmunofenotipificación , Integrina alfa2/inmunología , Integrina alfa2/metabolismo , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/inmunología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Antígenos Thy-1/genética , Antígenos Thy-1/inmunología , Antígenos Thy-1/metabolismo , Trasplante HeterólogoRESUMEN
In a proportion of patients with chronic myeloid leukemia (CML) being treated with dasatinib, we recently observed large granular lymphocyte (LGL) expansions carrying clonal T-cell receptor (TCR) gamma/delta gene rearrangements. To assess the prevalence and role of clonal lymphocytes in CML, we collected samples from patients (n = 34) at the time of diagnosis and during imatinib and dasatinib therapies and analyzed lymphocyte clonality with a sensitive polymerase chain reaction-based method of TCR gamma and delta genes. Surprisingly, at CML diagnosis, 15 of 18 patients (83%) had a sizeable clonal, BCR-ABL1 negative lymphocyte population, which was uncommon in healthy persons (1 of 12; 8%). The same clone persisted at low levels in most imatinib-treated patients. In contrast, in a distinct population of dasatinib-treated patients, the diagnostic phase clone markedly expanded, resulting in absolute lymphocytosis in blood. Most patients with LGL expansions (90%) had TCR delta rearrangements, which were uncommon in patients without an LGL expansion (10%). The TCR delta clones were confined to gammadelta(+) T- or natural killer-cell compartments and the TCR gamma clones to CD4(+)/CD8(+) alphabeta(+) fractions. The functional importance of clonal lymphocytes as a part of leukemia immune surveillance and the putative anergy-reversing role of dasatinib require further evaluation.
Asunto(s)
Antineoplásicos/uso terapéutico , Células Clonales/patología , Células Asesinas Naturales/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Subgrupos de Linfocitos T/patología , Tiazoles/uso terapéutico , Adulto , Anciano , Benzamidas , Linfocitos T CD8-positivos/química , Linfocitos T CD8-positivos/patología , Anergia Clonal , Células Clonales/química , Citomegalovirus/fisiología , Dasatinib , Femenino , Proteínas de Fusión bcr-abl/análisis , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Reordenamiento Génico de la Cadena delta de los Receptores de Antígenos de los Linfocitos T , Reordenamiento Génico de la Cadena gamma de los Receptores de Antígenos de los Linfocitos T , Humanos , Mesilato de Imatinib , Vigilancia Inmunológica , Células Asesinas Naturales/química , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/virología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Piperazinas/uso terapéutico , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subgrupos de Linfocitos T/química , Activación Viral/efectos de los fármacos , Adulto JovenRESUMEN
Bone marrow sinusoidal endothelial cells have a specific function as a site of transmigration of hematopoietic stem and progenitor cells and mature blood cells between bone marrow and blood stream. However, the specific characteristics of bone marrow sinusoidal endothelial cells are still largely unclear. We here report that these cells express stabilin-1 and stabilin-2, which in liver sinusoidal endothelial cells have been identified as endocytic scavenger receptors for several ligands, including SPARC and hyaluronan. We show here that intravenously injected formaldehyde-treated serum albumin, advanced glycation end-products, and collagen I alpha-chains were taken up by bone marrow sinusoidal endothelial cells, showing that these cells have a scavenging function and thereby may modulate bone marrow vascular stem cell niches. Importantly, we show hyaluronan mediated adhesion of hematopoietic stem and progenitor cells to stabilin-2-transfected cells, suggesting that stabilin-2 contributes to adhesion and homing of circulating stem and progenitor cells to bone marrow.
Asunto(s)
Células de la Médula Ósea/fisiología , Moléculas de Adhesión Celular Neuronal/biosíntesis , Células Endoteliales/fisiología , Animales , Células de la Médula Ósea/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Células Cultivadas , Células Endoteliales/metabolismo , RatonesRESUMEN
The members of the laminin family of heterotrimers are major constituents of all basement membranes, sheet-like extracellular structures, present in almost all organs. The laminins bind to cell surface receptors and thereby tightly connect the basement membrane to the adjacent cell layer. This provides for the specific basement membrane functions to stabilize cellular structures, to serve as effective physical barriers, and furthermore, to govern cell fate by inducing intracellular signalling cascades. Many different types of diseases involve basement membranes and laminins. Metastasizing solid tumors must pass through basement membranes to reach the vascular system, and various microbes and viruses enter the cells through direct interaction with laminins. Furthermore, whereas mutations in one specific laminin chain lead to a muscular disorder, mutations of other laminin chains cause skin blistering and kidney defects, respectively. This review summarizes recent progress concerning the molecular mechanisms of laminins in development and disease. The current knowledge may lead to clinical treatment of lamininopathies and may include stem-cell approaches as well as gene therapy.
Asunto(s)
Membrana Basal/metabolismo , Laminina/metabolismo , Animales , Membrana Basal/patología , Distroglicanos/metabolismo , Humanos , Integrinas/metabolismo , Laminina/genética , Modelos Biológicos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMEN
Despite increasing evidence for the involvement of bone marrow (BM) hematopoietic stem cell niche in leukemogenesis, how BM mesenchymal stem and progenitor cells (MSPCs) contribute to leukemia niche formation and progression remains unclear. Using an MLL-AF9 acute myeloid leukemia (AML) mouse model, we demonstrate dynamic alterations of BM cellular niche components, including MSPCs and endothelial cells during AML development and its association with AML engraftment. Primary patient AML cells also induced similar niche alterations in xenografted mice. AML cell infiltration in BM causes an expansion of early B-cell factor 2+ (Ebf2+) MSPCs with reduced Cxcl12 expression and enhanced generation of more differentiated mesenchymal progenitor cells. Importantly, in vivo fate-mapping indicates that Ebf2+ MSPCs participated in AML niche formation. Ebf2+ cell deletion accelerated the AML development. These data suggest that native BM MSPCs may suppress AML. However, they can be remodeled by AML cells to form leukemic niche that might contribute to AML progression. AML induced dysregulation of hematopoietic niche factors like Angptl1, Cxcl12, Kitl, Il6, Nov, and Spp1 in AML BM MSPCs, which was associated with AML engraftment and partially appeared before the massive expansion of AML cells, indicating the possible involvement of the niche factors in AML progression. Our study demonstrates distinct dynamic features and roles of BM MSPCs during AML development.
Asunto(s)
Carcinogénesis/patología , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Médula Ósea/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide , Proteínas de Fusión Oncogénica , Nicho de Células Madre/genética , Trasplante Heterólogo , Carga Tumoral , Microambiente TumoralRESUMEN
Although tyrosine kinase inhibitors (TKIs) have dramatically improved clinical outcome in chronic myeloid leukemia (CML), cure rarely occurs. This may be due to BCR-ABL-independent, aberrant signaling pathways, one of which leads to leukotriene (LT) formation. Well-recognized as inflammatory mediators, LT can also affect oncogenic mechanisms of several tumors. We have previously discovered elevated LT-synthesis and up-regulated cysteinyl-LT-inducing enzyme in CML. Here we report on dose-dependent inhibition of CML cell growth exerted by specific blockers of LT-signaling. Thus, the cysteinyl-LT1-receptor-antagonist montelukast significantly reduced the growth of K562, KCL22, and KU812 cells, as well as primary CD34+ blood cells from two CML patients. Adding montelukast to the TKI imatinib caused combined inhibition. No effect was seen on normal bone marrow cells. Similarly, growth inhibition was also observed with the 5-lipoxygenase (LO)-inhibitor BWA4C, the 5-LO-activating-protein-(FLAP)-inhibitor licofelone and the LTB4(BLT1)-receptor-antagonist LY293111. Thus, blocking of aberrant LT-signaling may provide an additional, novel therapeutic possibility in CML.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucotrienos/metabolismo , Transducción de Señal , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Antagonistas de Leucotrieno/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Leucotrienos/metabolismo , Receptores de Leucotrieno B4/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
PURPOSE: Tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukaemia have been reported to induce immunomodulatory effects. We aimed to assess peripheral blood (PB) and bone marrow (BM) lymphocyte status at the diagnosis and during different TKI therapies and correlate it with treatment responses. METHODS: BM and PB samples were acquired from 105 first-line TKI-treated patients. Relative number of BM lymphocytes was evaluated from MGG-stained BM aspirates, and immunophenotypic analyses were performed with multicolour flow cytometry. RESULTS: Early 3-month expansion of BM lymphocytes was found during all different TKIs (imatinib n = 71, 20 %; dasatinib n = 25, 21 %; nilotinib n = 9, 22 %; healthy controls n = 14, 12 %, p < 0.0001). Increased PB lymphocyte count was only observed during dasatinib therapy. The BM lymphocyte expansion was associated with early molecular response; patients with 3-month BCR-ABL1 <10 % showed higher lymphocyte counts than patients with BCR-ABL1 >10 % (23 vs. 17 %, p < 0.05). Detailed phenotypic analysis showed that BM lymphocyte expansion consisted of various lymphocyte subclasses, but especially the proportion of CD19+ B cells and CD3negCD16/56+ NK cells increased from diagnostic values. During dasatinib treatment, the lymphocyte balance in both BM and PB was shifted more to cytotoxic direction (increased CD8+CD57+ and CD8+HLA-DR+ cells, and low T regulatory cells), whereas no major immunophenotypic differences were observed between imatinib and nilotinib patients. CONCLUSIONS: Early BM lymphocytosis occurs with all current first-line TKIs and is associated with better treatment responses. PB and BM immunoprofile during dasatinib treatment markedly differs from both imatinib- and nilotinib-treated patients.
Asunto(s)
Médula Ósea/patología , Sistema Inmunológico/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Linfocitos/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Análisis Citogenético , Citotoxicidad Inmunológica , Dasatinib/uso terapéutico , Citometría de Flujo , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Inmunofenotipificación , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Fenotipo , PronósticoRESUMEN
Human bone marrow (BM) contains a rare population of nonhematopoietic mesenchymal stromal cells (MSCs), which are of central importance for the hematopoietic microenvironment. However, the precise phenotypic definition of these cells in adult BM has not yet been reported. In this study, we show that low/negative expression of CD140a (PDGFR-α) on lin(-)/CD45(-)/CD271(+) BM cells identified a cell population with very high MSC activity, measured as fibroblastic colony-forming unit frequency and typical in vitro and in vivo stroma formation and differentiation capacities. Furthermore, these cells exhibited high levels of genes associated with mesenchymal lineages and HSC supportive function. Moreover, lin(-)/CD45(-)/CD271(+)/CD140a(low/-) cells effectively mediated the ex vivo expansion of transplantable CD34(+) hematopoietic stem cells. Taken together, these data indicate that CD140a is a key negative selection marker for adult human BM-MSCs, which enables to prospectively isolate a close to pure population of candidate human adult stroma stem/progenitor cells with potent hematopoiesis-supporting capacity.
Asunto(s)
Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Antígenos CD/metabolismo , Biomarcadores , Análisis por Conglomerados , Ensayo de Unidades Formadoras de Colonias , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , TranscriptomaRESUMEN
Tyrosine kinase inhibitors have greatly improved the prognosis of chronic myeloid leukemia (CML). In addition to direct kinase inhibition, their effects can also be mediated through immune modulation, such as expansion of cytotoxic T and natural-killer cells observed during dasatinib therapy. As natural-killer cell and partially CD8(+) T-cell function are regulated by killer immunoglobulin-like receptors (KIRs), we studied whether the KIR gene profile is associated with clinical therapy response in dasatinib-treated CML patients (n = 191). In first-line patients, the absence of the inhibitory KIR2DL5A (p = 0.0489), 2DL5B (p = 0.030), and 2DL5all (p = 0.0272) genes were associated with improved molecular response at the 12-month time point. In addition, the same trend was seen with two activating KIR genes, 2DS1 (p = 0.061) and 2DS2 (p = 0.071). Furthermore, when patients were clustered into two groups by their KIR gene profile, the BCR-ABL1 transcript levels differed significantly between the groups (p = 0.047), showing that patients who lacked several KIR genes had better response. The comparison of first-line and second-line patients did not show any significant differences in either KIR or human leukocyte antigen genotypes. Our results show that immunogenetic factors, such as the KIR gene profile, can play a role in tyrosine kinase inhibitor therapy response. Additional studies are warranted to elucidate the functional significance of KIR genes associated with treatment outcomes.
Asunto(s)
Antineoplásicos/uso terapéutico , Perfilación de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Pirimidinas/uso terapéutico , Receptores KIR/genética , Tiazoles/uso terapéutico , Dasatinib , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genéticaRESUMEN
Despite the recent success of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), approximately 2-17% of patients develop clonal cytogenetic changes in the Philadelphia-negative (Ph(-)) cell population. A fraction of these patients, in particular those displaying trisomy 8 or monosomy 7, are at risk of developing a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Consequently, there is a need to characterize the clinical features of such cases and to increase our understanding of the pathogenetic mechanisms underlying the emergence of clonal cytogenetic changes in Ph(-) cells. To date, most cases reported have received treatment with imatinib. Here we describe the case of a patient with CML who developed monosomy 7 in Ph(-) cells during dasatinib therapy. At 20 months after dasatinib initiation, the patient developed MDS, which rapidly progressed into AML. Genome-wide 500K SNP array analysis of the monosomy 7 clone revealed no acquired submicroscopic copy number changes. Given the strong association between monosomy 7 and mutation of genes involved in the RAS pathway in juvenile myelomonocytic leukemia, we also screened for pathogenetic variants in KRAS, NRAS, and PTPN11, but did not detect any changes.
Asunto(s)
Cromosomas Humanos Par 7/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/genética , Monosomía , Pirimidinas/uso terapéutico , Tiazoles/uso terapéutico , Dasatinib , Femenino , Genes ras/genética , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide Aguda/inducido químicamente , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/inducido químicamente , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/patología , Persona de Mediana Edad , Mutación/genética , Síndromes Mielodisplásicos/inducido químicamente , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/genéticaRESUMEN
Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.
Asunto(s)
Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Integrina alfa4/metabolismo , Integrina alfa6/metabolismo , Hígado/metabolismo , Envejecimiento/fisiología , Empalme Alternativo/genética , Animales , Anticuerpos/inmunología , Médula Ósea/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Integrina alfa6/genética , Integrina alfa6/inmunología , Hígado/citología , Ratones , Ratones Noqueados , ARN Mensajero/genéticaRESUMEN
The role of cytokines in regulation of hematopoietic stem cells (HSCs) remains poorly understood. Herein we demonstrate that thrombopoietin (THPO) and its receptor, MPL, are critically involved in postnatal steady-state HSC maintenance, reflected in a 150-fold reduction of HSCs in adult Thpo(-/-) mice. Further, whereas THPO and MPL proved not required for fetal HSC expansion, HSC expansion posttransplantation was highly MPL and THPO dependent. The distinct role of THPO in postnatal HSC maintenance is accompanied by accelerated HSC cell-cycle kinetics in Thpo(-/-) mice and reduced expression of the cyclin-dependent kinase inhibitors p57(Kip2) and p19(INK4D) as well as multiple Hox transcription factors. Although also predicted to be an HSC viability factor, BCL2 failed to rescue the HSC deficiency of Thpo(-/-) mice. Thus, THPO regulates posttransplantation HSC expansion as well as the maintenance of adult quiescent HSCs, of critical importance to avoid postnatal HSC exhaustion.
Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Trombopoyetina/fisiología , Animales , Ciclo Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Trombopoyetina/genética , Trombopoyetina/farmacologíaRESUMEN
The laminin receptor integrin alpha6 chain is ubiquitously expressed in human and mouse hematopoietic stem and progenitor cells. We have studied its role for homing of stem and progenitor cells to mouse hematopoietic tissues in vivo. A function-blocking anti-integrin alpha6 antibody significantly reduced progenitor cell homing to bone marrow (BM) of lethally irradiated mice, with a corresponding retention of progenitors in blood. Remarkably, the anti-integrin alpha6 antibody profoundly inhibited BM homing of long-term multilineage engrafting stem cells, studied by competitive repopulation assay and analysis of donor-derived lymphocytes and myeloid cells in blood 16 weeks after transplantation. A similar profound inhibition of long-term stem cell homing was obtained by using a function-blocking antibody against alpha4 integrin, studied in parallel. Furthermore, the anti-integrin alpha6 and alpha4 antibodies synergistically inhibited homing of short-term repopulating stem cells. Intravenous injection of anti-integrin alpha6 antibodies, in contrast to antibodies against alpha4 integrin, did not mobilize progenitors or enhance cytokine-induced mobilization by G-CSF. Our results provide the first evidence for a distinct functional role of integrin alpha6 receptor during hematopoietic stem and progenitor cell homing and collaboration of alpha6 integrin with alpha4 integrin receptors during homing of short-term stem cells.
Asunto(s)
Células Madre Hematopoyéticas/fisiología , Integrina alfa4/fisiología , Integrina alfa6/fisiología , Animales , Células de la Médula Ósea/fisiología , Movimiento Celular , Ensayo de Unidades Formadoras de Colonias , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Técnicas In Vitro , Laminina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/citologíaRESUMEN
Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis.