RESUMEN
Symptoms are currently used as testing indicators for SARS-CoV-2 in England. In this study, we analysed national contact tracing data for England (NHS Test and Trace) for the period 1 December to 28 December 2021 to explore symptom differences between the variants, Delta and Omicron. We found that at least one of the symptoms currently used as indicators (fever, cough and loss of smell and taste) were reported in 61.5% of Omicron cases and 72.2% in Delta cases, suggesting that these symptoms are less predictive of Omicron infections. Nearly 40% of Omicron infections did not report any of the three key indicative symptoms, reinforcing the importance of the entire spectrum of symptoms for targeted testing. After adjusting for potential confounding factors, fever and cough were more commonly associated with Omicron infections compared to Delta, showing the importance of considering age and vaccination status when assessing symptom profiles. Sore throat was also more commonly reported in Omicron infections, and loss of smell and taste more commonly reported in Delta infections. Our study shows the value of continued monitoring of symptoms associated with SARS-CoV-2, as changes may influence the effectiveness of testing policy and case ascertainment approaches.
Asunto(s)
COVID-19 , Trazado de Contacto , Anosmia , COVID-19/epidemiología , Tos , Inglaterra/epidemiología , Fiebre , Humanos , SARS-CoV-2/genéticaRESUMEN
Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.
Asunto(s)
Evolución Biológica , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/fisiología , Extinción Biológica , Aptitud Genética/genética , Aptitud Genética/fisiología , Mutación Puntual/genética , Pseudomonas aeruginosa/virologíaRESUMEN
There is evidence that human activities are reducing the population genetic diversity of species worldwide. Given the prediction that parasites better exploit genetically homogeneous host populations, many species could be vulnerable to disease outbreaks. While agricultural studies have shown the devastating effects of infectious disease in crop monocultures, the widespread nature of this diversity-disease relationship remains unclear in natural systems. Here, we provide broad support that high population genetic diversity can protect against infectious disease by conducting a meta-analysis of 23 studies, with a total of 67 effect sizes. We found that parasite functional group (micro- or macroparasite) affects the presence of the effect and study setting (field or laboratory-based environment) influences the magnitude. Our study also suggests that host genetic diversity is overall a robust defence against infection regardless of host reproduction, parasite host range, parasite diversity, virulence and the method by which parasite success was recorded. Combined, these results highlight the importance of monitoring declines of host population genetic diversity as shifts in parasite distributions could have devastating effects on at-risk populations in nature.
Asunto(s)
Agricultura , Variación Genética , Interacciones Huésped-Parásitos , Parásitos/fisiología , Animales , Genética de Población , Especificidad del Huésped , Humanos , VirulenciaRESUMEN
Coevolution between hosts and parasites is a major driver of rapid evolutionary change1 and diversification.2,3 However, direct antagonistic interactions between hosts and parasites could be disrupted4 when host microbiota form a line of defense, a phenomenon widespread across animal and plant species.5,6 By suppressing parasite infection, protective microbiota could reduce the need for host-based defenses and favor host support for microbiota colonization,6 raising the possibility that the microbiota can alter host-parasite coevolutionary patterns and processes.7 Here, using an experimental evolution approach, we co-passaged populations of nematode host (Caenorhabditis elegans) and parasites (Staphylococcus aureus) when hosts were colonized (or not) by protective bacteria (Enterococcus faecalis). We found that microbial protection during coevolution resulted in the evolution of host mortality tolerance-higher survival following parasite infection-and in parasites adapting to microbial defenses. Compared to unprotected host-parasite coevolution, the protected treatment was associated with reduced dominance of fluctuating selection dynamics in host populations. No differences in host recombination rate or genetic diversity were detected. Genomic divergence was observed between parasite populations coevolved in protected and unprotected hosts. These findings indicate that protective host microbiota can determine the evolution of host defense strategies and shape host-parasite coevolutionary dynamics.
Asunto(s)
Microbiota , Parásitos , Animales , Bacterias , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Interacciones Huésped-Parásitos/genéticaRESUMEN
Pathogens continue to emerge from increased contact with novel host species. Whilst these hosts can represent distinct environments for pathogens, the impacts of host genetic background on how a pathogen evolves post-emergence are unclear. In a novel interaction, we experimentally evolved a pathogen (Staphylococcus aureus) in populations of wild nematodes (Caenorhabditis elegans) to test whether host genotype and genetic diversity affect pathogen evolution. After ten rounds of selection, we found that pathogen virulence evolved to vary across host genotypes, with differences in host metal ion acquisition detected as a possible driver of increased host exploitation. Diverse host populations selected for the highest levels of pathogen virulence, but infectivity was constrained, unlike in host monocultures. We hypothesise that population heterogeneity might pool together individuals that contribute disproportionately to the spread of infection or to enhanced virulence. The genomes of evolved populations were sequenced, and it was revealed that pathogens selected in distantly-related host genotypes diverged more than those in closely-related host genotypes. S. aureus nevertheless maintained a broad host range. Our study provides unique empirical insight into the evolutionary dynamics that could occur in other novel infections of wildlife and humans.