Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Neurosci ; 43(5): 281-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34218224

RESUMEN

Following preterm birth, serum levels of insulin-like growth factor 1 (IGF-1) decrease compared to corresponding in utero levels. A recent clinical trial indicated that supplementation with recombinant human (rh) IGF-1/rhIGF-binding protein 3 (rhIGF-1/rhIGFBP-3) prevents severe intraventricular hemorrhage (IVH) in extremely preterm infants. In a preterm rabbit pup model, we characterized endogenous serum and hepatic IGF-1, along with brain distribution of IGF-1 and IGF-1 receptor (IGF1R). We then evaluated the effects of rhIGF-1/rhIGFBP-3 on gene expression of regulators of cerebrovascular maturation and structure. Similar to preterm infants, serum IGF-1 concentrations decreased rapidly after preterm birth in the rabbit pup. Administration of rhIGF-1/rhIGFBP-3 restored in utero serum levels but was rapidly eliminated. Immunolabeled IGF1R was widely distributed in multiple brain regions, displaying an abundant density in the choroid plexus and sub-ependymal germinal zones. Increased IGF-1 immunoreactivity, distributed as IGF1R, was detected 4 h after rhIGF-1/rhIGFBP-3 administration. The rhIGF-1/rhIGFBP-3 treatment led to upregulation of choroid plexus genes involved in vascular maturation and structure, with corresponding protein translation for most of these genes. The preterm rabbit pup model is well suited for evaluation of IGF-1-based prevention of IVH. Administration of rhIGF-1/rhIGFBP-3 affects cerebrovascular maturation, suggesting a role for it in preventing preterm IVH.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Nacimiento Prematuro , Animales , Proteínas Portadoras , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Conejos , Proteínas Recombinantes
2.
Dev Neurosci ; 41(3-4): 234-246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31991415

RESUMEN

Neonates born with critical congenital heart defects are at risk of diffuse white matter injuries and neurodevelopmental impairments. This study aimed to determine the impact of circulating cell-free hemoglobin and hyperoxia, both present during cardiopulmonary bypass circulation, on white matter brain development. Postnatal day 6 rat pups were injected intraperitoneally with cell-free Hb or vehicle and exposed to hyperoxia (fiO2 = 0.8) or normoxia (fiO2 = 0.21) for 24 h. We evaluated apoptosis, myelination, and oligodendrocyte maturation with immunohistochemistry, gene and protein analyses, and in vivo diffusion tensor magnetic resonance imaging (MRI). Consistent with previous studies, we found an increase in apoptosis of oligodendrocytes as determined by TUNEL+ staining in Olig2+ cells in white matter, cortex, thalamus, and hippocampus following exposure to hyperoxia with no additional effect of cell-free Hb. A transient increase in the mRNA expression of intercellular adhesion molecule 1 at 6 h was observed following combined exposure to cell-free Hb and hyperoxia. No indications of oligodendrocyte maturational delay or hypomyelination were observed after either insult, delivered separately or combined, as determined by immunohistochemistry, Western blot, and diffusion tensor MRI. In our model, exposure to circulatory cell-free Hb, with or without concomitant hyperoxia, did not significantly alter brain white matter development.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/crecimiento & desarrollo , Hemoglobinas/farmacología , Hiperoxia/metabolismo , Sustancia Blanca/patología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Imagen de Difusión Tensora/métodos , Modelos Animales de Enfermedad , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas Wistar , Sustancia Blanca/efectos de los fármacos
3.
Sci Rep ; 13(1): 19847, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37963901

RESUMEN

Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates processes of vascular maturation. The pathogenesis of intraventricular hemorrhage (IVH) relates to the fragility of the immature capillaries in the germinal matrix, and its inability to resist fluctuations in cerebral blood flow. In this work, using different experimental setups, we aimed to (i) establish an optimal time-point for glycerol-induction of IVH in relation to time-point of recombinant human (rh) IGF-1/rhIGFBP-3 administration, and (ii) to evaluate the effects of a physiologic replacement dose of rhIGF-1/rhIGFBP-3 on prevention of IVH and survival in the preterm rabbit pup. The presence of IVH was evaluated using high-frequency ultrasound and post-mortem examinations. In the first part of the study, the highest incidence of IVH (> 60%), occurred when glycerol was administered at the earliest timepoint, e.g., 6 h after birth. At later time-points (18 and 24 h) the incidence decreased substantially. In the second part of the study, the incidence of IVH and mortality rate following rhIGF-1/rhIGFBP-3 administration was not statistically different compared to vehicle treated animals. To evaluate the importance of maintaining intrauterine serum levels of IGF-1 following preterm birth, as reported in human interventional studies, additional studies are needed to further characterize and establish the potential of rhIGF-1/rhIGFBP-3 in reducing the prevalence of IVH and improving survival in the preterm rabbit pup.


Asunto(s)
Hormonas Peptídicas , Nacimiento Prematuro , Animales , Femenino , Humanos , Recién Nacido , Conejos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Glicerol , Nacimiento Prematuro/tratamiento farmacológico , Hemorragia Cerebral/prevención & control , Hemorragia Cerebral/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico
4.
Fluids Barriers CNS ; 20(1): 59, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582792

RESUMEN

Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates essential processes of vascular maturation and stabilization. Importantly, preterm birth is associated with reduced serum levels of IGF-1 as compared to in utero levels. Using a preterm rabbit pup model, we investigated the uptake of systemic recombinant human (rh) IGF-1 in complex with its main binding protein IGF-binding protein 3 (BP-3) to the brain parenchyma via the choroid plexus. Five hours after subcutaneous administration, labeled rhIGF-1/rhIGFBP-3 displayed a widespread presence in the choroid plexus of the lateral and third ventricle, however, to a less degree in the fourth, as well as in the perivascular and subarachnoid space. We found a time-dependent uptake of IGF-1 in cerebrospinal fluid, decreasing with postnatal age, and a translocation of IGF-1 through the choroid plexus. The impact of systemic rhIGF-1/rhIGFBP-3 on IGF-1 receptor activation in the choroid plexus decreased with postnatal age, correlating with IGF-1 uptake in cerebrospinal fluid. In addition, choroid plexus gene expression was observed to increase with postnatal age. Moreover, using choroid plexus in vitro cell cultures, gene expression and protein synthesis were further investigated upon rhIGF-1/rhIGFBP-3 stimulation as compared to rhIGF-1 alone, and found not to be differently altered. Here, we characterize the uptake of systemic rhIGF-1/rhIGFBP-3 to the preterm brain, and show that the interaction between systemic rhIGF-1/rhIGFBP-3 and choroid plexus varies over time.


Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Animales , Femenino , Humanos , Recién Nacido , Conejos , Encéfalo/metabolismo , Plexo Coroideo/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteínas Recombinantes/metabolismo , Animales Recién Nacidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA