Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489257

RESUMEN

Ebola disease (EBOD) remains a significant and ongoing threat to African countries, characterized by a mortality rate of 25% to 90% in patients with high viral load and significant transmissibility. The most recent outbreak, reported in Uganda in September 2022, was declared officially over in January 2023. However, it was caused by the Sudan Ebola virus (SUDV), a culprit species not previously reported for a decade. Since its discovery in 1976, the management of EBOD has primarily relied on supportive care. Following the devastating outbreak in West Africa from 2014 to 2016 secondary to the Zaire Ebola virus (EBOV), where over 28,000 lives were lost, dedicated efforts to find effective therapeutic agents have resulted in considerable progress in treating and preventing disease secondary to EBOV. Notably, 2 monoclonal antibodies-Ebanga and a cocktail of monoclonal antibodies, called Inmazeb-received Food and Drug Administration (FDA) approval in 2020. Additionally, multiple vaccines have been approved for EBOD prevention by various regulatory bodies, with Ervebo, a recombinant vesicular stomatitis virus-vectored vaccine against EBOV being the first vaccine to receive approval by the FDA in 2019. This review covers the key signs and symptoms of EBOD, its modes of transmission, and the principles guiding supportive care. Furthermore, it explores recent advancements in treating and preventing EBOD, highlighting the unique properties of each therapeutic agent and the ongoing progress in discovering new treatments.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacunas Virales , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Anticuerpos Antivirales , Ebolavirus/genética , Anticuerpos Monoclonales/uso terapéutico , Uganda/epidemiología
2.
Expert Rev Anti Infect Ther ; 22(4): 189-201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38275276

RESUMEN

INTRODUCTION: Metallo-beta-lactamases (MBLs) are responsible for resistance to almost all beta-lactam antibiotics. Found predominantly in Gram-negative bacteria, they severely limit treatment options. Understanding the epidemiology, risk factors, treatment, and prevention of infections caused by MBL-producing organisms is essential to reduce their burden. AREAS COVERED: The origins and structure of MBLs are discussed. We describe the mechanisms of action that differentiate MBLs from other beta-lactamases. We discuss the global epidemiology of MBL-producing organisms and their impact on patients' outcomes. By exposing the mechanisms of transmission of MBLs among bacterial populations, we emphasize the importance of infection prevention and control. EXPERT OPINION: MBLs are spreading globally and challenging the majority of available antibacterial agents. Genotypic tests play an important role in the identification of MBL production. Phenotypic tests are less specific but may be used in low-resource settings, where MBLs are more predominant. Infection prevention and control are critical to reduce the spread of organisms producing MBL in healthcare systems. New combinations such as avibactam-aztreonam and new agents such as cefiderocol have shown promising results for the treatment of infections caused by MBL-producing organisms. New antibiotic and non-antibiotic agents are being developed and may improve the management of infections caused by MBL-producing organisms.


Asunto(s)
Antibacterianos , beta-Lactamasas , Humanos , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aztreonam , Bacterias Gramnegativas , Bacterias , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología
3.
Curr Res Microb Sci ; 6: 100245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873590

RESUMEN

Ibrexafungerp (IBX) is a new antifungal drug that recently entered the antifungal landscape. It disrupts fungal cell wall synthesis by non-competitive inhibition of the ß-(1,3)-D-glucan (BDG) synthase enzyme. It has demonstrated activity against a range of pathogens including Candida and Aspergillus spp., as well as retaining its activity against azole-resistant and echinocandin-resistant strains. It also exhibits anti-biofilm properties. Pharmacokinetic (PK) studies revealed favorable bioavailability, high protein binding, and extensive tissue distribution with a low potential for CYP-mediated drug interactions. It is characterized by the same mechanism of action of echinocandins with limited cross-resistance with other antifungal agents. Resistance to this drug can arise from mutations in the FKS genes, primarily FKS2 mutations in Nakaseomyces glabrata. In vivo, IBX was found to be effective in murine models of invasive candidiasis (IC) and invasive pulmonary aspergillosis (IPA). It also showed promising results in preventing and treating Pneumocystis jirovecii infections. Clinical trials showed that IBX was effective and non-inferior to fluconazole in treating vulvovaginal candidiasis (VVC), including complicated cases, as well as in preventing its recurrence. These trials positioned it as a Food and Drug Administration (FDA)-approved option for the treatment and prophylaxis of VVC. Trials showed comparable responses to standard-of-care in IC, with favorable preliminary results in C. auris infections in terms of efficacy and tolerability as well as in refractory cases of IC. Mild adverse reactions have been reported including gastrointestinal symptoms. Overall, IBX represents a significant addition to the antifungal armamentarium, with its unique action, spectrum of activity, and encouraging clinical trial results warranting further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA