Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Ecol ; 17(1): 4, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28166763

RESUMEN

BACKGROUND: Plant-parasitic nematodes (PPN) are major crop pests. On olive (Olea europaea), they significantly contribute to economic losses in the top-ten olive producing countries in the world especially in nurseries and under cropping intensification. The diversity and the structure of PPN communities respond to environmental and anthropogenic forces. The olive tree is a good host plant model to understand the impact of such forces on PPN diversity since it grows according to different modalities (wild, feral and cultivated olives). A wide soil survey was conducted in several olive-growing regions in Morocco. The taxonomical and the functional diversity as well as the structures of PPN communities were described and then compared between non-cultivated (wild and feral forms) and cultivated (traditional and high-density olive cultivation) olives. RESULTS: A high diversity of PPN with the detection of 117 species and 47 genera was revealed. Some taxa were recorded for the first time on olive trees worldwide and new species were also identified. Anthropogenic factors (wild vs cultivated conditions) strongly impacted the PPN diversity and the functional composition of communities because the species richness, the local diversity and the evenness of communities significantly decreased and the abundance of nematodes significantly increased in high-density conditions. Furthermore, these conditions exhibited many more obligate and colonizer PPN and less persister PPN compared to non-cultivated conditions. Taxonomical structures of communities were also impacted: genera such as Xiphinema spp. and Heterodera spp. were dominant in wild olive, whereas harmful taxa such as Meloidogyne spp. were especially enhanced in high-density orchards. CONCLUSIONS: Olive anthropogenic practices reduce the PPN diversity in communities and lead to changes of the community structures with the development of some damaging nematodes. The study underlined the PPN diversity as a relevant indicator to assess community pathogenicity. That could be taken into account in order to design control strategies based on community rearrangements and interactions between species instead of reducing the most pathogenic species.


Asunto(s)
Nematodos/fisiología , Olea/parasitología , Enfermedades de las Plantas/parasitología , Suelo/parasitología , Animales , Biodiversidad , Marruecos , Olea/fisiología , Suelo/química
2.
PLoS One ; 19(1): e0295043, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232071

RESUMEN

Crop-to-wild gene flow is a mechanism process widely documented, both in plants and animals. This can have positive or negative impacts on the evolution of admixed populations in natural environments, yet the phenomenon is still misunderstood in long-lived woody species, contrary to short-lived crops. Wild olive Olea europaea L. occurs in the same eco-geographical range as domesticated olive, i.e. the Mediterranean Basin (MB). Moreover, it is an allogamous and anemophilous species whose seeds are disseminated by birds, i.e. factors that drive gene flow between crops and their wild relatives. Here we investigated the genetic structure of western MB wild olive populations in natural environments assuming a homogenous gene pool with limited impact of cultivated alleles, as previously suggested. We used a target sequencing method based on annotated genes from the Farga reference genome to analyze 27 western MB olive tree populations sampled in natural environments in France, Spain and Morocco. We also target sequenced cultivated olive tree accessions from the Worldwide Olive Germplasm Bank of Marrakech and Porquerolles and from an eastern MB wild olive tree population. We combined PCA, sNMF, pairwise FST and TreeMix and clearly identified genuine wild olive trees throughout their natural distribution range along a north-south gradient including, for the first time, in southern France. However, contrary to our assumption, we highlighted more admixed than genuine wild olive trees. Our results raise questions regarding the admixed population evolution pattern in this environment, which might be facilitated by crop-to-wild gene flow.


Asunto(s)
Olea , Olea/genética , Geografía , Marruecos , Flujo Génico , Genómica , Variación Genética
3.
Genetica ; 139(9): 1083-94, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21960415

RESUMEN

The conservation of cultivated plants in ex-situ collections is essential for the optimal management and use of their genetic resources. For the olive tree, two world germplasm banks (OWGB) are presently established, in Córdoba (Spain) and Marrakech (Morocco). This latter was recently founded and includes 561 accessions from 14 Mediterranean countries. Using 12 nuclear microsatellites (SSRs) and three chloroplast DNA markers, this collection was characterised to examine the structure of the genetic diversity and propose a set of olive accessions encompassing the whole Mediterranean allelic diversity range. We identified 505 SSR profiles based on a total of 210 alleles. Based on these markers, the genetic diversity was similar to that of cultivars and wild olives which were previously characterised in another study indicating that OWGB Marrakech is representative of Mediterranean olive germplasm. Using a model-based Bayesian clustering method and principal components analysis, this OWGB was structured into three main gene pools corresponding to eastern, central and western parts of the Mediterranean Basin. We proposed 10 cores of 67 accessions capturing all detected alleles and 10 cores of 58 accessions capturing the 186 alleles observed more than once. In each of the 10 cores, a set of 40 accessions was identical, whereas the remaining accessions were different, indicating the need to include complementary criteria such as phenotypic adaptive and agronomic traits. Our study generated a molecular database for the entire OWGB Marrakech that may be used to optimise a strategy for the management of olive genetic resources and their use for subsequent genetic and genomic olive breeding.


Asunto(s)
Olea/genética , Análisis por Conglomerados , ADN de Cloroplastos/química , ADN de Plantas/química , Pool de Genes , Marcadores Genéticos , Genotipo , Región Mediterránea , Polimorfismo Genético
4.
Plants (Basel) ; 10(6)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198539

RESUMEN

The Laperrine's olive is endemic to the Saharan Mountains. Adapted to arid environments, it may constitute a valuable genetic resource to improve water-stress tolerance in the cultivated olive. However, limited natural regeneration coupled with human pressures make it locally endangered in Central Sahara. Understanding past population dynamics is thus crucial to define management strategies. Nucleotide sequence diversity was first investigated on five nuclear genes and compared to the Mediterranean and African olives. These data confirm that the Laperrine's olive has a strong affinity with the Mediterranean olive, but it shows lower nucleotide diversity than other continental taxa. To investigate gene flows mediated by seeds and pollen, polymorphisms from nuclear and plastid microsatellites from 383 individuals from four Saharan massifs were analyzed. A higher genetic diversity in Ahaggar (Hoggar, Algeria) suggests that this population has maintained over the long term a larger number of individuals than other massifs. High-to-moderate genetic differentiation between massifs confirms the role of desert barriers in limiting gene flow. Yet contrasting patterns of isolation by distance were observed within massifs, and also between plastid and nuclear markers, stressing the role of local factors (e.g., habitat fragmentation, historical range shift) in seed and pollen dispersal. Implications of these results in the management of the Laperrine's olive genetic resources are discussed.

5.
Front Plant Sci ; 10: 1593, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921243

RESUMEN

Molecular characterization of crop genetic resources is a powerful approach to elucidate the origin of varieties and facilitate local cultivar management. Here we aimed to decipher the origin and diversification of French local olive germplasm. The 113 olive accessions of the ex situ collection of Porquerolles were characterized with 20 nuclear microsatellites plus their plastid haplotype. We then compared this collection to Mediterranean olive varieties from the Worldwide Olive Germplasm Bank of Marrakech, Morocco. High genetic diversity was observed within local French varieties, indicating a high admixture level, with an almost equal contribution from the three main Mediterranean gene pools. Nearly identical and closely related genotypes were observed among French and Italian/Spanish varieties. A high number of parent-offspring relationships were also detected among French varieties and between French and two Italian varieties ('Frantoio' and 'Moraiolo') and the Spanish variety ('Gordal Sevillana'). Our investigations indicated that French olive germplasm resulted from the diffusion of material from multiple origins followed by diversification based on parentage relationships between varieties. We strongly suggest that farmers have been actively selecting olives based on local French varieties. French olive agroecosystems more affected by unexpected frosts than southernmost regions could also be seen as incubators and as a bridge between Italy and Spain that has enhanced varietal olive diversification.

6.
PLoS One ; 14(10): e0223716, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622375

RESUMEN

Olive (Olea europaea L.) is a major fruit crop in the Mediterranean Basin. Ex-situ olive management is essential to ensure optimal use of genetic resources in breeding programs. The Worldwide Olive Germplasm Bank of Córdoba (WOGBC), Spain, and Marrakech (WOGBM), Morocco, are currently the largest existing olive germplasm collections. Characterization, identification, comparison and authentication of all accessions in both collections could thus provide useful information for managing olive germplasm for its preservation, exchange within the scientific community and use in breeding programs. Here we applied 20 microsatellite markers (SSR) and 11 endocarp morphological traits to discriminate and authenticate 1091 olive accessions belonging to WOGBM and WOGBC (554 and 537, respectively). Of all the analyzed accessions, 672 distinct SSR profiles considered as unique genotypes were identified, but only 130 were present in both collections. Combining SSR markers and endocarp traits led to the identification of 535 cultivars (126 in common) and 120 authenticated cultivars. No significant differences were observed between collections regarding the allelic richness and diversity index. We concluded that the genetic diversity level was stable despite marked contrasts in varietal composition between collections, which could be explained by their different collection establishment conditions. This highlights the extent of cultivar variability within WOGBs. Moreover, we detected 192 mislabeling errors, 72 of which were found in WOGBM. A total of 228 genotypes as molecular variants of 74 cultivars, 79 synonyms and 39 homonyms as new cases were identified. Both collections were combined to define the nested core collections of 55, 121 and 150 sample sizes proposed for further studies. This study was a preliminary step towards managing and mining the genetic diversity in both collections while developing collaborations between olive research teams to conduct association mapping studies by exchanging and phenotyping accessions in contrasted environmental sites.


Asunto(s)
Olea/clasificación , Olea/genética , Fitomejoramiento , Banco de Semillas , Alelos , Genotipo , Repeticiones de Microsatélite , Marruecos , Fenotipo , Polimorfismo Genético , España
7.
Evol Appl ; 10(9): 867-880, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29151878

RESUMEN

The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self-incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra- and interspecific stigma tests on 89 genotypes representative of species-wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self-incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross-incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.

8.
PLoS One ; 8(5): e61265, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667437

RESUMEN

Phenotypic characterisation of germplasm collections is a decisive step towards association mapping analyses, but it is particularly expensive and tedious for woody perennial plant species. Characterisation could be more efficient if focused on a reasonably sized subset of accessions, or so-called core collection (CC), reflecting the geographic origin and variability of the germplasm. The questions that arise concern the sample size to use and genetic parameters that should be optimized in a core collection to make it suitable for association mapping. Here we investigated these questions in olive (Olea europaea L.), a perennial fruit species. By testing different sampling methods and sizes in a worldwide olive germplasm bank (OWGB Marrakech, Morocco) containing 502 unique genotypes characterized by nuclear and plastid loci, a two-step sampling method was proposed. The Shannon-Weaver diversity index was found to be the best criterion to be maximized in the first step using the Core Hunter program. A primary core collection of 50 entries (CC50) was defined that captured more than 80% of the diversity. This latter was subsequently used as a kernel with the Mstrat program to capture the remaining diversity. 200 core collections of 94 entries (CC94) were thus built for flexibility in the choice of varieties to be studied. Most entries of both core collections (CC50 and CC94) were revealed to be unrelated due to the low kinship coefficient, whereas a genetic structure spanning the eastern and western/central Mediterranean regions was noted. Linkage disequilibrium was observed in CC94 which was mainly explained by a genetic structure effect as noted for OWGB Marrakech. Since they reflect the geographic origin and diversity of olive germplasm and are of reasonable size, both core collections will be of major interest to develop long-term association studies and thus enhance genomic selection in olive species.


Asunto(s)
Mapeo Cromosómico/métodos , Desequilibrio de Ligamiento , Olea/genética , Núcleo Celular/genética , ADN de Plantas/genética , Sitios Genéticos/genética , Variación Genética/genética , Haplotipos/genética , Región Mediterránea , Repeticiones de Microsatélite/genética , Olea/citología , Filogenia , Plastidios/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA