Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(23): 4365-4377, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37055181

RESUMEN

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease characterized by progressive motor and cognitive impairments, with no disease-modifying therapies yet available. HD pathophysiology involves evident impairment in glutamatergic neurotransmission leading to severe striatal neurodegeneration. The vesicular glutamate transporter-3 (VGLUT3) regulates the striatal network that is centrally affected by HD. Nevertheless, current evidence on the role of VGLUT3 in HD pathophysiology is lacking. Here, we crossed mice lacking Slc17a8 gene (VGLUT3 -/-) with heterozygous zQ175 knock-in mouse model of HD (zQ175:VGLUT3 -/-). Longitudinal assessment of motor and cognitive functions from 6 to 15 months of age reveals that VGLUT3 deletion rescues motor coordination and short-term memory deficits in both male and female zQ175 mice. VGLUT3 deletion also rescues neuronal loss likely via the activation of Akt and ERK1/2 in the striatum of zQ175 mice of both sexes. Interestingly, the rescue in neuronal survival in zQ175:VGLUT3 -/- mice is accompanied by a reduction in the number of nuclear mutant huntingtin (mHTT) aggregates with no change in the total aggregate levels or microgliosis. Collectively, these findings provide novel evidence that VGLUT3, despite its limited expression, can be a vital contributor to HD pathophysiology and a viable target for HD therapeutics.SIGNIFICANCE STATEMENT Dysregulation of the striatal network centrally contributes to the pathophysiology of Huntington's disease (HD). The atypical vesicular glutamate transporter-3 (VGLUT3) has been shown to regulate several major striatal pathologies, such as addiction, eating disorders, or L-DOPA-induced dyskinesia. Yet, our understanding of VGLUT3's role in HD remains unclear. We report here that deletion of the Slc17a8 (Vglut3) gene rescues the deficits in both motor and cognitive functions in HD mice of both sexes. We also find that VGLUT3 deletion activates neuronal survival signaling and reduces nuclear aggregation of abnormal huntingtin proteins and striatal neuron loss in HD mice. Our novel findings highlight the vital contribution of VGLUT3 in HD pathophysiology that can be exploited for HD therapeutic management.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Masculino , Femenino , Animales , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteína Huntingtina/genética
2.
FASEB J ; 36(2): e22135, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032355

RESUMEN

In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward-based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co-transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue-based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward-evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors.


Asunto(s)
Acetilcolina/metabolismo , Colinérgicos/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Animales , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
3.
J Physiol ; 599(24): 5397-5416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34783032

RESUMEN

DFNA25 is an autosomal-dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super-resolution microscopy, we observed oversized synaptic ribbons and patch-clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano-transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. KEY POINTS: The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3-p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3-p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.


Asunto(s)
Estereocilios , Sinapsis , Animales , Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Ratones
4.
J Psychiatry Neurosci ; 46(1): E1-E13, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32559027

RESUMEN

Background: Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood. Methods: We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.0 mg/kg, i.p.) on locomotor activity and binding of the mGlu5 ligand [3H]ABP688. In a parallel study, in 19 stimulant-drug-naïve healthy human volunteers (14 female) we administered 3 doses of dextroamphetamine (0.3 mg/kg, p.o.) or placebo, followed by a fourth dose 2 weeks later. We measured [11C]ABP688 binding using positron emission tomography before and after the induction phase. We assessed psychomotor and behavioural sensitization using speech rate, eye blink rate and self-report. We measured the localization of mGlu5 relative to synaptic markers in mouse striatum using immunofluorescence. Results: We observed amphetamine-induced psychomotor sensitization in mice and humans. We did not see group differences in mGlu5 availability following 3 pre-challenge amphetamine doses, but group differences did develop in mice administered 5 doses. In mice and humans, individual differences in mGlu5 binding after repeated amphetamine administration were negatively correlated with the extent of behavioural sensitization. In drug-naïve mice, mGlu5 was expressed at 67% of excitatory synapses on dendrites of striatal medium spiny neur. Limitations: Correlational results should be interpreted as suggestive because of the limited sample size. We did not assess sex differences. Conclusion: Together, these results suggest that changes in mGlu5 availability are not part of the earliest neural adaptations in stimulant-induced behavioural sensitization, but low mGlu5 binding might identify a higher propensity for sensitization.


Asunto(s)
Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado , Dextroanfetamina/farmacología , Locomoción/efectos de los fármacos , Corteza Prefrontal , Desempeño Psicomotor/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/metabolismo , Adulto , Animales , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dextroanfetamina/administración & dosificación , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oximas/farmacocinética , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Piridinas/farmacocinética , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores
5.
Mol Pharmacol ; 98(4): 314-327, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32873747

RESUMEN

Cross talk between both pre- and postsynaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions, including synaptic plasticity and motor planning. Metabotropic glutamate receptor (mGluR) 5 exhibits promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders as a consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival, and differentiation. Given these crucial roles, mGluR5 signaling is under the tight control of glutamate release machinery mediated through vesicular glutamate transporters (VGLUTs) that ultimately dictate glutamatergic output. A particular VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5, and the dynamic cross talk between mGluR5 and VGLUT3 is key for the function of specific neuronal networks involved in motor coordination, emotions, and cognition. Thus, aberrant signaling of the VGLUT3-mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson disease, anxiety disorders, and drug addiction. We argue that a comprehensive profiling of how coordinated VGLUT3-mGluR5 signaling influences overall glutamatergic neurotransmission is warranted. SIGNIFICANCE STATEMENT: Vesicular glutamate receptor (VGLUT) 3 machinery orchestrates glutamate release, and its distribution overlaps with metabotropic glutamate receptor (mGluR) 5 in regional brain circuitries, including striatum, hippocampus, and raphe nucleus. Therefore, VGLUT3-mGluR5 cross talk can significantly influence both physiologic and pathophysiologic glutamatergic neurotransmission. Pathological signaling of the VGLUT3-mGluR5 axis is linked to Parkinson disease, anxiety disorders, and drug addiction. However, it is also predicted to contribute to other motor and cognitive disorders.


Asunto(s)
Conducta/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Encéfalo/metabolismo , Humanos , Transducción de Señal , Transmisión Sináptica
6.
J Neurochem ; 148(6): 779-795, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30556914

RESUMEN

Several subtypes of modulatory neurons co-express vesicular glutamate transporters (VGLUTs) in addition to their cognate vesicular transporters. These neurons are believed to establish new forms of neuronal communication. The atypical VGLUT3 is of particular interest since in the striatum this subtype is found in tonically active cholinergic interneurons (TANs) and in a subset of 5-HT fibers. The striatum plays a major role in psychomotor effects induced by amphetamine. Whether and how VGLUT3-operated glutamate/ACh or glutamate/5HT co-transmissions modulates psychostimulants-induced maladaptive behaviors is still unknown. Here, we investigate the involvement of VGLUT3 and glutamate co-transmission in amphetamine-induced psychomotor effects and stereotypies. Taking advantage of constitutive and cell-type specific VGLUT3-deficient mouse lines, we tackled the hypothesis that VGLUT3 could gate psychomotor effects (locomotor activity and stereotypies) induced by acute or chronic administration of amphetamine. Interestingly, VGLUT3-null mice demonstrated blunted amphetamine-induced stereotypies as well as reduced striatal ∆FosB expression. VGLUT3-positive varicosities within the striatum arise in part from 5HT neurons. We tested the involvement of VGLUT3 deletion in serotoninergic neurons in amphetamine-induced stereotypies. Mice lacking VGLUT3 specifically in 5HT fibers showed no alteration to amphetamine sensitivity. In contrast, specific deletion of VGLUT3 in cholinergic neurons partially phenocopied the effects observed in the constitutive knock-out mice. Our results show that constitutive deletion of VGLUT3 modulates acute and chronic locomotor effects induced by amphetamine. They point to the fact that the expression of VGLUT3 in multiple brain areas is pivotal in gating amphetamine-induced psychomotor adaptations. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Anfetamina/farmacología , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Locomoción/efectos de los fármacos , Animales , Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Neurosci ; 37(15): 4181-4199, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28314816

RESUMEN

The atypical vesicular glutamate transporter type 3 (VGLUT3) is expressed by subpopulations of neurons using acetylcholine, GABA, or serotonin as neurotransmitters. In addition, VGLUT3 is expressed in the inner hair cells of the auditory system. A mutation (p.A211V) in the gene that encodes VGLUT3 is responsible for progressive deafness in two unrelated families. In this study, we investigated the consequences of the p.A211V mutation in cell cultures and in the CNS of a mutant mouse. The mutation substantially decreased VGLUT3 expression (-70%). We measured VGLUT3-p.A211V activity by vesicular uptake in BON cells, electrophysiological recording of isolated neurons, and its ability to stimulate serotonergic accumulation in cortical synaptic vesicles. Despite a marked loss of expression, the activity of the mutated isoform was only minimally altered. Furthermore, mutant mice displayed none of the behavioral alterations that have previously been reported in VGLUT3 knock-out mice. Finally, we used stimulated emission depletion microscopy to analyze how the mutation altered VGLUT3 distribution within the terminals of mice expressing the mutated isoform. The mutation appeared to reduce the expression of the VGLUT3 transporter by simultaneously decreasing the number of VGLUT3-positive synaptic vesicles and the amount of VGLUT3 per synapses. These observations suggested that VGLUT3 global activity is not linearly correlated with VGLUT3 expression. Furthermore, our data unraveled a nonuniform distribution of VGLUT3 in synaptic vesicles. Identifying the mechanisms responsible for this complex vesicular sorting will be critical to understand VGLUT's involvement in normal and pathological conditions.SIGNIFICANCE STATEMENT VGLUT3 is an atypical member of the vesicular glutamate transporter family. A point mutation of VGLUT3 (VGLUT3-p.A211V) responsible for a progressive loss of hearing has been identified in humans. We observed that this mutation dramatically reduces VGLUT3 expression in terminals (∼70%) without altering its function. Furthermore, using stimulated emission depletion microscopy, we found that reducing the expression levels of VGLUT3 diminished the number of VGLUT3-positive vesicles at synapses. These unexpected findings challenge the vision of a uniform distribution of synaptic vesicles at synapses. Therefore, the overall activity of VGLUT3 is not proportional to the level of VGLUT3 expression. These data will be key in interpreting the role of VGLUTs in human pathologies.


Asunto(s)
Encéfalo/metabolismo , Mutación Puntual/fisiología , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria
8.
J Neurosci ; 36(10): 3016-23, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961955

RESUMEN

The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus.


Asunto(s)
Glutamatos/metabolismo , Hipocampo/fisiología , Neuronas/fisiología , Optogenética , Núcleos Septales/citología , Ritmo Teta/fisiología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Banda Diagonal de Broca/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/genética , Ratones , Vías Nerviosas/fisiología , Quinoxalinas/farmacología , Sinapsinas/genética , Sinapsinas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
9.
J Neurochem ; 142(6): 857-875, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28628197

RESUMEN

Striatal cholinergic interneurons (CIN) are pivotal for the regulation of the striatal network. Acetylcholine (ACh) released by CIN is centrally involved in reward behavior as well as locomotor or cognitive functions. Recently, BAC transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2) and displaying almost 50 extra copies of the VAChT gene were used to dissect cholinergic circuit connectivity and function using optogenetic approaches. These mice display over-expression of the vesicular acetylcholine transporter (VAChT) and increased cholinergic tone. Consequently, ChAT-ChR2 mice are a valuable model to investigate hypercholinergic phenotypes. Previous experiments established that ChAT-ChR2 mice display an increased sensitivity to amphetamine induced-locomotor activity and stereotypes. In the present report, we analyzed the impact of VAChT over-expression in the striatum of ChAT-ChR2 mice. ChAT-ChR2 mice displayed increased locomotor sensitization in response to low dose of cocaine. In addition, we observed a dramatic remodeling of the morphology of CIN in ChAT-ChR2 transgenic mice. VAChT immunolabeling was markedly enhanced in the soma and terminal of CIN from ChAT-ChR2 mice as previously shown (Crittenden et al. 2014). Interestingly, the number of cholinergic varicosities was markedly reduced (-87%) whereas their size was significantly increased (+177%). Moreover, VAChT over-expression dramatically modified its trafficking along the somatodendritic and axonal arbor. These findings demonstrate that ChAT-ChR2 mice present major alterations of CIN neuronal morphology and increased behavioral sensitization to cocaine, supporting the notion that the increased levels of VAChT observed in these mice make them fundamentally different from wild-type mice.

10.
Neurobiol Dis ; 87: 69-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26711621

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons. The gold standard therapy relies on dopamine (DA) replacement by the administration of levodopa (l-DOPA). However, with time l-DOPA treatment induces severe motor side effects characterized by abnormal and involuntary movements, or dyskinesia. Although earlier studies point to a role of striatal cholinergic interneurons, also known as striatal tonically active neurons (TANs), in l-DOPA-induced dyskinesia (LID), the underlying mechanisms remain to be fully characterized. Here, we find that DA depletion is accompanied by increased expression of choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT) as well as the atypical vesicular glutamate transporter type 3 (VGLUT3). TANs number and soma size are not changed. In dyskinetic mice, the VAChT levels remain high whereas the expression of VGLUT3 decreases. LID is attenuated in VGLUT3-deficient mice but not in mice bearing selective inactivation of VAChT in TANs. Finally, the absence of VGLUT3 is accompanied by a reduction of l-DOPA-induced phosphorylation of ERK1/2, ribosomal subunit (rpS6) and GluA1. Our results reveal that VGLUT3 plays an important role in the development of LID and should be considered as a potential and promising therapeutic target for prevention of LID.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiparkinsonianos/toxicidad , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Recuento de Células , Tamaño de la Célula , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oxidopamina , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fosforilación/efectos de los fármacos , Receptores AMPA/metabolismo , Proteína S6 Ribosómica/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
11.
Nat Rev Neurosci ; 12(4): 204-16, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21415847

RESUMEN

Recent data indicate that 'classical' neurotransmitters can also act as co-transmitters. This notion has been strengthened by the demonstration that three vesicular glutamate transporters (vesicular glutamate transporter 1 (VGLUT1), VGLUT2 and VGLUT3) are present in central monoamine, acetylcholine and GABA neurons, as well as in primarily glutamatergic neurons. Thus, intriguing questions are raised about the morphological and functional organization of neuronal systems endowed with such a dual signalling capacity. In addition to glutamate co-release, vesicular synergy - a process leading to enhanced packaging of the 'primary' transmitter - is increasingly recognized as a major property of the glutamatergic co-phenotype. The behavioural relevance of this co-phenotype is presently the focus of considerable interest.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Transporte Vesicular de Glutamato/clasificación
12.
ACS Chem Neurosci ; 15(6): 1185-1196, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377469

RESUMEN

A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.


Asunto(s)
Ácido Glutámico , Serotonina , Ratones , Animales , Serotonina/farmacología , Ácido Glutámico/farmacología , Fluoxetina/farmacología , Núcleos del Rafe , Neuronas
13.
Cell Rep ; 43(7): 114411, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38944834

RESUMEN

Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.


Asunto(s)
Núcleo Dorsal del Rafe , Neuronas , Sueño , Estrés Psicológico , Animales , Masculino , Núcleo Dorsal del Rafe/metabolismo , Ratones , Estrés Psicológico/metabolismo , Neuronas/metabolismo , Sueño/fisiología , Serotonina/metabolismo , Ratones Endogámicos C57BL , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética
14.
Nat Commun ; 15(1): 5691, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971801

RESUMEN

Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.


Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Masculino , Dopamina/metabolismo , Ratones , Cuerpo Estriado/metabolismo , Humanos , Acetilcolina/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/genética , Transducción de Señal/efectos de los fármacos , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Ratones Endogámicos C57BL , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Mutación , Mutación Missense , Proteínas de Transporte Vesicular de Acetilcolina
15.
Eur J Neurosci ; 37(10): 1631-42, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23581566

RESUMEN

Synaptic vesicles (SVs) from excitatory synapses carry vesicular glutamate transporters (VGLUTs) that fill the vesicles with neurotransmitter. Although the essential function of VGLUTs as glutamate transporters has been well established, the evidence for additional cell-biological functions is more controversial. Both VGLUT1 and VGLUT2 disruptions in mice result in a reduced number of SVs away from release sites, flattening of SVs, and the appearance of tubular structures. Therefore, we analysed the morphology, biochemical composition and trafficking of SVs at synapses of VGLUT1(-/-) mice in order to test for a function of VGLUTs in the formation or clustering of SVs. Analyses with high-pressure freezing immobilisation and electron tomography pointed to a role of VGLUT1 transport function in the tonicity of excitatory SVs, explaining the aldehyde-induced flattening of SVs observed in VGLUT1(-/-) synapses. We confirmed the steep reduction in the number of SVs previously observed in VGLUT1(-/-) presynaptic terminals, but did not observe accumulation of endocytotic intermediates. Furthermore, SV proteins of adult VGLUT1(-/-) mouse brain tissue were expressed at normal levels in all subcellular fractions, suggesting that they were not displaced to another organelle. We thus assessed the mobility of the recently documented superpool of SVs. Synaptobrevin2-enhanced green fluorescent protein time lapse experiments revealed an oversized superpool of SVs in VGLUT1(-/-) neurons. Our results support the idea that, beyond glutamate loading, VGLUT1 enhances the tonicity of excitatory SVs and stabilises SVs at presynaptic terminals.


Asunto(s)
Vesículas Sinápticas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/ultraestructura , Proteína 1 de Transporte Vesicular de Glutamato/genética
16.
BMC Neurosci ; 14: 152, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24308494

RESUMEN

BACKGROUND: It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. RESULTS: Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. CONCLUSIONS: These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.


Asunto(s)
Ganglios Basales/metabolismo , Vías Nerviosas/metabolismo , Enfermedad de Parkinson/metabolismo , Núcleo Subtalámico/metabolismo , Proteínas de Transporte Vesicular de Glutamato/biosíntesis , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley
17.
eNeuro ; 10(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36720646

RESUMEN

Fear is an emotional mechanism that helps to cope with potential hazards. However, when fear is generalized, it becomes maladaptive and represents a core symptom of posttraumatic stress disorder (PTSD). Converging lines of research show that dysfunction of glutamatergic neurotransmission is a cardinal feature of trauma and stress related disorders such as PTSD. However, the involvement of glutamatergic co-transmission in fear is less well understood. Glutamate is accumulated into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The atypical subtype, VGLUT3, is responsible for the co-transmission of glutamate with acetylcholine, serotonin, or GABA. To understand the involvement of VGLUT3-dependent co-transmission in aversive memories, we used a Pavlovian fear conditioning paradigm in VGLUT3-/- mice. Our results revealed a higher contextual fear memory in these mice, despite a facilitation of extinction. In addition, the absence of VGLUT3 leads to fear generalization, probably because of a pattern separation deficit. Our study suggests that the VGLUT3 network plays a crucial role in regulating emotional memories. Hence, VGLUT3 is a key player in the processing of aversive memories and therefore a potential therapeutic target in stress-related disorders.


Asunto(s)
Miedo , Transmisión Sináptica , Ratones , Animales , Miedo/fisiología , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Trastornos de la Memoria , Ácido Glutámico/metabolismo
18.
PLoS One ; 18(8): e0289770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37624765

RESUMEN

Evidence suggests that subcortical hyperdopaminergia alters cognitive function in schizophrenia and antipsychotic drugs (APD) fail at rescuing cognitive deficits in patients. In a previous study, we showed that blocking D2 dopamine receptors (D2R), a core action of APD, led to profound reshaping of mesohippocampal fibers, deficits in synaptic transmission and impairments in learning and memory in the mouse hippocampus (HP). However, it is currently unknown how excessive dopamine affects HP-related cognitive functions, and how APD would impact HP functions in such a state. After verifying the presence of DAT-positive neuronal projections in the ventral (temporal), but not in the dorsal (septal), part of the HP, GBR12935, a blocker of dopamine transporter (DAT), was infused in the CA1 of adult C57Bl/6 mice to produce local hyperdopaminergia. Chronic GBR12935 infusion in temporal CA1 induced a mild learning impairment in the Morris Water Maze and abolished long-term recognition memory in novel-object (NORT) and object-place recognition tasks (OPRT). Deficits were accompanied by a significant decrease in DAT+ mesohippocampal fibers. Intrahippocampal or systemic treatment with sulpiride during GBR infusions improved the NORT deficit but not that of OPRT. In vitro application of GBR on hippocampal slices abolished long-term depression (LTD) of fEPSP in temporal CA1. LTD was rescued by co-application with sulpiride. In conclusion, chronic DAT blockade in temporal CA1 profoundly altered mesohippocampal modulation of hippocampal functions. Contrary to previous observations in normodopaminergic mice, antagonising D2Rs was beneficial for cognitive functions in the context of hippocampal hyperdopaminergia.


Asunto(s)
Antipsicóticos , Animales , Ratones , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Sulpirida/farmacología , Sulpirida/uso terapéutico , Hipocampo , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL
19.
J Neurosci ; 31(43): 15544-59, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031900

RESUMEN

The vesicular glutamate transporter VGLUT1 loads synaptic vesicles with the neurotransmitter glutamate and thereby determines glutamate release at many synapses in the mammalian brain. Due to its function and selective localization, VGLUT1 is one of the most specific markers for glutamatergic synaptic vesicles. It has been used widely to identify glutamatergic synapses, and its expression levels are tightly correlated with changes in quantal size, modulations of synaptic plasticity, and corresponding behaviors. We generated a fluorescent VGLUT1(Venus) knock-in mouse for the analysis of VGLUT1 and glutamatergic synaptic vesicle trafficking. The mutation does not affect glutamatergic synapse function, and thus the new mouse model represents a universal tool for the analysis of glutamatergic transmitter systems in the forebrain. Previous studies demonstrated synaptic vesicle exchange between terminals in vitro. Using the VGLUT1(Venus) knock-in, we show that synaptic vesicles are dynamically shared among boutons in the cortex of mice in vivo. We provide a detailed analysis of synaptic vesicle sharing in vitro, and show that network homeostasis leads to dynamic scaling of synaptic VGLUT1 levels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Neuronas/citología , Terminales Presinápticos/fisiología , Sinapsis/metabolismo , Vesículas Sinápticas/fisiología , Animales , Proteínas Bacterianas/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
20.
Nat Neurosci ; 11(3): 292-300, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18278042

RESUMEN

Three subtypes of vesicular transporters accumulate glutamate into synaptic vesicles to promote its vesicular release. One of the subtypes, VGLUT3, is expressed in neurons, including cholinergic striatal interneurons, that are known to release other classical transmitters. Here we showed that disruption of the Slc17a8 gene (also known as Vglut3) caused an unexpected hypocholinergic striatal phenotype. Vglut3(-/-) mice were more responsive to cocaine and less prone to haloperidol-induced catalepsy than wild-type littermates, and acetylcholine release was decreased in striatum slices lacking VGLUT3. These phenotypes were associated with a colocalization of VGLUT3 and the vesicular acetylcholine transporter (VAChT) in striatal synaptic vesicles and the loss of a synergistic effect of glutamate on vesicular acetylcholine uptake. We propose that this vesicular synergy between two transmitters is the result of the unbalanced bioenergetics of VAChT, which requires anion co-entry for continuing vesicular filling. Our study reveals a previously unknown effect of glutamate on cholinergic synapses with potential functional and pharmacological implications.


Asunto(s)
Acetilcolina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/genética , Acetilcolina/biosíntesis , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Antipsicóticos/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación hacia Abajo/genética , Resistencia a Medicamentos/genética , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/genética , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA