Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2109617119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35353605

RESUMEN

α-Synuclein (α-syn) phosphorylation at serine 129 (pS129­α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129­α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129­α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129­α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129­α-syn (WT­α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129­α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129­α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129­α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129­α-syn as a measure of efficacy in clinical trials.


Asunto(s)
Amiloide , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Agregación Patológica de Proteínas , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Serina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396924

RESUMEN

Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Estudios Transversales , Metaboloma , Ácido Aspártico/metabolismo , Metabolómica , Alanina/metabolismo , Arginina/metabolismo , Citratos , Glutamatos/metabolismo , Ácidos Grasos Insaturados
3.
Brain ; 145(4): 1257-1263, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34999780

RESUMEN

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedad por Cuerpos de Lewy , Priones , Sinucleinopatías , Encéfalo/patología , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Priones/metabolismo , Esfingolípidos/metabolismo , alfa-Sinucleína/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175824

RESUMEN

Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteómica , Proyectos Piloto , Biomarcadores
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108604

RESUMEN

Autism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician's assessment and family's awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/genética , Proyectos Piloto , Proteómica , Biomarcadores/metabolismo , Proteoma/metabolismo
6.
Neurobiol Dis ; 170: 105771, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598675

RESUMEN

Despite the increasing number of studies on Parkinson's disease and it being the second most common neurodegenerative disorder in the world, no established diagnostic markers or disease modifying therapies are available. Understanding the mechanisms involved in its pathogenesis and identifying markers capable of diagnosing or tracking progression of PD is greatly needed. Among the several factors identified to be involved in Parkinson's disease, the immune system has had increasingly growing evidence that presents a fresh avenue to investigate the pathology of the disease. The involvement of the immune system in the pathology of Parkinson's disease has been linked to an interaction between the peripheral and central nervous system immune response. Whether this involvement is due to an immune response being a cause or consequence of Parkinson's disease pathology is still a matter of debate. Players investigated include cytokines, chemokines, and immune-cells found in both the central and peripheral immune system. Herein, we discuss advances in the current literature on these immune-related markers and their potential use as markers for Parkinson's disease diagnosis and progression.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Quimiocinas , Citocinas , Humanos , Enfermedad de Parkinson/patología
7.
Brain ; 143(1): 249-265, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816026

RESUMEN

Parkinson's disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson's disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson's disease and a genome-wide association study in Parkinson's disease has identified SNCA as a risk gene for Parkinson's disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson's disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson's disease and a Rep1 polymorphism, all of which are causal of familial Parkinson's disease or increase the risk of sporadic Parkinson's disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson's disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson's disease that showed RBD-like behaviour and hyposmia without motor symptoms.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Trastornos del Olfato/genética , Enfermedad de Parkinson/genética , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/genética , alfa-Sinucleína/genética , Animales , Recuento de Células , Cromosomas Artificiales Bacterianos , Electroencefalografía , Electromiografía , Endopeptidasa K/metabolismo , Ratones Transgénicos , Trastornos del Olfato/fisiopatología , Enfermedad de Parkinson/fisiopatología , Polimorfismo de Nucleótido Simple , Trastorno de la Conducta del Sueño REM/fisiopatología , Sueño , alfa-Sinucleína/metabolismo
8.
Brain ; 143(5): 1462-1475, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32380543

RESUMEN

In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.


Asunto(s)
Encéfalo/patología , Neuroinmunomodulación/fisiología , Enfermedad de Parkinson/fisiopatología , Nervio Vago/patología , alfa-Sinucleína/toxicidad , Anciano , Animales , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Femenino , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Masculino , Papio , alfa-Sinucleína/administración & dosificación
9.
Molecules ; 26(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205249

RESUMEN

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Asunto(s)
Alcaloides/farmacología , Productos Biológicos/farmacología , alfa-Sinucleína/antagonistas & inhibidores , Amiloide/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Medicina Tradicional China/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
10.
Mov Disord ; 35(2): 288-295, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31737952

RESUMEN

BACKGROUND: Neurofilament light chain is a marker of axonal damage and is of interest as a biofluid biomarker for PD. The objective of this study was to investigate whether CSF or serum neurofilament contributes to a combination of CSF biomarkers in defining the optimal biomarker panel for discriminating PD patients from healthy controls. In addition, we aimed to assess whether CSF and/or serum neurofilament levels are associated with clinical measures of disease severity. METHODS: We measured neurofilament light chain levels in CSF and/or serum of 139 PD patients and 52 age-matched healthy controls. We used stepwise logistic regression analyses to test whether neurofilament contributes to a biomarker CSF panel including total, oligomeric, and phosphorylated α-synuclein and Alzheimer's disease biomarkers. Measures of disease severity included disease duration, UPDRS-III, Hoehn & Yahr stage, and MMSE. RESULTS: After correcting for age, CSF neurofilament levels were 42% higher in PD patients compared with controls (P < 0.01), whereas serum neurofilament levels were 37% higher (P = 0.08). Combining CSF neurofilament, phosphorylated-/total α-synuclein, and oligomeric-/total α-synuclein yielded the best-fitting model for discriminating PD patients from controls (area under the curve 0.92). The discriminatory potential of serum neurofilament in the CSF biomarker panel was similar (area under the curve 0.90). Higher serum neurofilament was associated with a lower MMSE score. There were no other associations between CSF and/or serum neurofilament levels and clinical disease severity. CONCLUSIONS: CSF neurofilament contributes to a panel of CSF α-synuclein species in differentiating PD patients from healthy controls. Serum neurofilament may have added value to a biofluid biomarker panel for differentiating PD patients from controls. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Biomarcadores , Filamentos Intermedios/metabolismo , Enfermedad de Parkinson , alfa-Sinucleína , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/diagnóstico , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/líquido cefalorraquídeo , alfa-Sinucleína/sangre , alfa-Sinucleína/líquido cefalorraquídeo
11.
Brain ; 142(5): 1365-1385, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30927362

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial/fisiología , Sinapsis/fisiología , Percepción Visual/fisiología , alfa-Sinucleína/toxicidad , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Memoria Espacial/efectos de los fármacos , Sinapsis/efectos de los fármacos , Percepción Visual/efectos de los fármacos , alfa-Sinucleína/administración & dosificación
12.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198266

RESUMEN

In early-stage Parkinson's disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament light chain, amyloid-ß42, and tau are associated with cognitive performance in early-stage PD patients. CSF levels of total-α-synuclein and phosphorylated-α-synuclein, neurofilament light chain, amyloid-ß42, and total-tau and phosphorylated-tau were measured in 26 PD patients (disease duration ≤5 years and Hoehn and Yahr stage 1-2.5). Multivariable linear regression models, adjusted for age, gender, and educational level, were used to assess the relationship between CSF biomarker levels and memory, attention, executive and visuospatial function, and language performance scores. In 26 early-stage PD patients, attention and memory were the most commonly affected domains. A higher CSF phosphorylated-α-synuclein/total-α-synuclein ratio was associated with better executive functioning (sß = 0.40). Higher CSF neurofilament light was associated with worse memory (sß = -0.59), attentional (sß = -0.32), and executive functioning (sß = -0.35). Reduced CSF amyloid-ß42 levels were associated with poorer attentional functioning (sß = 0.35). Higher CSF phosphorylated-tau was associated with worse language functioning (sß = -0.33). Thus, CSF biomarker levels, in particular neurofilament light, were related to the most commonly affected cognitive domains in early-stage PD. This indicates that CSF biomarker levels may identify early-stage PD patients who are at an increased risk of developing cognitive impairment.


Asunto(s)
Atención/fisiología , Axones/patología , Trastornos del Conocimiento/fisiopatología , Trastornos de la Memoria/fisiopatología , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Función Ejecutiva/fisiología , Femenino , Humanos , Filamentos Intermedios/metabolismo , Lenguaje , Modelos Lineales , Masculino , Memoria/fisiología , Persona de Mediana Edad , Análisis Multivariante , Pruebas Neuropsicológicas , Fragmentos de Péptidos/líquido cefalorraquídeo , Fosforilación , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
13.
J Neurochem ; 150(5): 626-636, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265130

RESUMEN

Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease and is estimated to affect approximately 1-4% of individuals aged over 60 years old. Although considerable efforts have been invested into developing disease-modifying therapies for Parkinson's disease, such efforts have been confounded by the difficulty in accurately diagnosing Parkinson's disease during life to enable accurate patient stratification for clinical trialling of candidate therapeutics. Therefore, the search for effective biomarkers that can be accurately evaluated during life with non-invasive means is a pressing issue in the field. Since the discovery of α-synuclein (α-syn) as a protein linked to a familial form of Parkinson's disease, later identified as the major protein component of the neuropathological hallmark of idiopathic Parkinson's disease, considerable interest has focused on this protein and its distinct conformers. We describe here the progress that has been made in the area of Parkinson's disease biomarker discovery with a focus on α-synuclein. In particular, we highlight the novel assays that have been employed and the increasing complexity in evaluating α-synuclein with regard to the considerable diversity of conformers that exist in the biofluids and peripheral tissues under disease conditions. "This article is part of the Special Issue Synuclein."


Asunto(s)
Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/análisis , Biomarcadores , Western Blotting , Líquidos Corporales/química , Encéfalo/diagnóstico por imagen , Estudios Transversales , Progresión de la Enfermedad , Diagnóstico Precoz , Ensayo de Inmunoadsorción Enzimática , Gónadas/química , Humanos , Estudios Longitudinales , Espectrometría de Masas , Membrana Mucosa/química , Especificidad de Órganos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Fosforilación , Tomografía de Emisión de Positrones , Agregado de Proteínas , Procesamiento Proteico-Postraduccional , Glándulas Salivales/química , Piel/química , alfa-Sinucleína/química
14.
J Neurochem ; 150(5): 612-625, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31055836

RESUMEN

Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".


Asunto(s)
Anticuerpos/inmunología , Sinucleinopatías/terapia , alfa-Sinucleína/inmunología , Anticuerpos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Especificidad de Anticuerpos , Biomarcadores , Diagnóstico Tardío , Epítopos/inmunología , Humanos , Fragmentos de Inmunoglobulinas/inmunología , Pruebas Inmunológicas/métodos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/terapia , Agregación Patológica de Proteínas/inmunología , Agregación Patológica de Proteínas/prevención & control , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/inmunología , Anticuerpos de Dominio Único/inmunología , Sinucleinopatías/diagnóstico , Sinucleinopatías/inmunología , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/química
15.
Neurobiol Dis ; 127: 163-177, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849508

RESUMEN

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.


Asunto(s)
Enfermedad por Cuerpos de Lewy/terapia , Degeneración Nerviosa/terapia , alfa-Sinucleína/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Vectores Genéticos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Ratones , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , ARN Interferente Pequeño/administración & dosificación , Receptores de LDL/genética , Receptores de LDL/metabolismo , alfa-Sinucleína/genética
17.
Neurobiol Dis ; 130: 104525, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276792

RESUMEN

Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 µg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 µg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 µg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 µg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.


Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratas , Ratas Endogámicas F344 , Sustancia Negra/patología , Sinucleinopatías/patología
18.
BMC Neurol ; 19(1): 113, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164098

RESUMEN

BACKGROUND AND AIM: Toxic oligomeric α-synuclein (αS; O-αS) has been suggested to play a central role in the pathogenesis of Lewy body diseases such as Parkinson's disease (PD). Cerebrospinal fluid (CSF) levels of αS, O-αS, total and phosphorylated tau, and amyloid ß 1-42 (Aß1-42) are thought to reflect the pathophysiology or clinical symptoms in PD. In this study, we examined correlations of the CSF levels of these proteins with the clinical symptoms, and with each other in drug-naïve patients with PD. METHODS: Twenty-seven drug-naïve patients with PD were included. Motor and cognitive functions were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment (MoCA), and Neurobehavioral Cognitive Status Examination (COGNISTAT). CSF levels of total αS, O-αS, Aß1-42, total tau and tau phosphorylated at threonine 181 (P-tau181p) were measured. CSF levels of these proteins were compared with clinical assessments from the UPDRS, MoCA and COGNISTAT using Spearman correlation analysis. Spearman correlation coefficients among CSF protein levels were also evaluated. RESULTS: CSF levels of αS were negatively correlated with UPDRS part III (motor score) (p < 0.05) and bradykinesia (p < 0.01), and positively correlated with COGNISTAT subtest of judgement (p < 0.01) and CSF levels of Aß1-42 (p < 0.001), total tau (p < 0.001) and P-tau181p (p < 0.01). Lower CSF levels of Aß1-42, total tau and P-tau181p were significantly related to worsening of some motor and/or cognitive functions. The CSF level of O-αS showed no correlation with any motor and cognitive assessments or with CSF levels of the other proteins. CONCLUSION: CSF levels of αS are correlated with some clinical symptoms and CSF levels of other pathogenic proteins in drug-naïve PD patients. These correlations suggest a central role for interaction and aggregation of αS with Aß1-42, tau, and phosphorylated tau in the pathogenesis of PD. Although O-αS has been shown to have neurotoxic effects, CSF levels do not reflect clinical symptoms or levels of other proteins in cross-sectional assessment.


Asunto(s)
Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología
20.
J Neuroinflammation ; 15(1): 129, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29716614

RESUMEN

BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.


Asunto(s)
Cuerpos de Lewy/patología , Microglía/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Sustancia Negra/patología , alfa-Sinucleína/toxicidad , Animales , Inyecciones Intraventriculares , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Ratas , Ratas Endogámicas F344 , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA