Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 18(2): 101347, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670488

RESUMEN

BACKGROUND & AIM: Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS: To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS: We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS: These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.

2.
Dev Cell ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821056

RESUMEN

Evolutionary adaptation of multicellular organisms to a closed gut created an internal microbiome differing from that of the environment. Although the composition of the gut microbiome is impacted by diet and disease state, we hypothesized that vertebrates promote colonization by commensal bacteria through shaping of the apical surface of the intestinal epithelium. Here, we determine that the evolutionarily ancient FOXA transcription factors control the composition of the gut microbiome by establishing favorable glycosylation on the colonic epithelial surface. FOXA proteins bind to regulatory elements of a network of glycosylation enzymes, which become deregulated when Foxa1 and Foxa2 are deleted from the intestinal epithelium. As a direct consequence, microbial composition shifts dramatically, and spontaneous inflammatory bowel disease ensues. Microbiome dysbiosis was quickly reversed upon fecal transplant into wild-type mice, establishing a dominant role for the host epithelium, in part mediated by FOXA factors, in controlling symbiosis in the vertebrate holobiont.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA