Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 169(4): 708-721.e12, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457609

RESUMEN

Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.


Asunto(s)
Conjugación Genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/genética , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Bacteriano/química , ADN Bacteriano/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364102

RESUMEN

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Asunto(s)
Medios de Contraste , Cobre , Cobre/metabolismo , Medios de Contraste/química , Imagen por Resonancia Magnética , Sitios de Unión , Péptidos
3.
Angew Chem Int Ed Engl ; 62(34): e202218783, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37162386

RESUMEN

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Pliegue de Proteína
4.
Inorg Chem ; 58(5): 3015-3025, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776218

RESUMEN

The design, synthesis, and application of a nine-coordinate gadolinium(III)-containing spin label, [Gd.sTPATCN]-SL, for use in nanometer-distance measurement experiments by EPR spectroscopy is presented. The spin label links to cysteines via a short thioether tether and has a narrow central transition indicative of small zero-field splitting (ZFS). A protein homodimer, TRIM25cc, was selectively labeled with [Gd.sTPATCN]-SL (70%) and a nitroxide (30%) under mild conditions and measured using the double electron electron resonance (DEER) technique with both commercial Q-band and home-built W-band spectrometers. The label shows great promise for increasing the sensitivity of DEER measurements through both its favorable relaxation parameters and the large DEER modulation depth at both Q- and W-band for the inter-Gd(III) DEER measurement which, at 9%, is the largest recorded under these conditions.

5.
Mol Cell ; 41(4): 398-408, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329878

RESUMEN

Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.


Asunto(s)
Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Acetilación , Sitios de Unión , Replicación del ADN , Chaperonas de Histonas/genética , Histonas/genética , Modelos Biológicos , Nucleosomas/metabolismo
6.
J Am Chem Soc ; 140(24): 7420-7424, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29860839

RESUMEN

Paramagnetic endohedral fullerenes with long spin coherence times, such as N@C60 and Y@C82, are being explored as potential spin quantum bits (qubits). Their use for quantum information processing requires a way to hold them in fixed spatial arrangements. Here we report the synthesis of a porphyrin-based two-site receptor 1, offering a rigid structure that binds spin-active fullerenes (Y@C82) at a center-to-center distance of 5.0 nm, predicted from molecular simulations. The spin-spin dipolar coupling was measured with the pulsed EPR spectroscopy technique of double electron electron resonance and analyzed to give a distance of 4.87 nm with a small distribution of distances.

7.
Nucleic Acids Res ; 44(13): 6157-72, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27036862

RESUMEN

Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3-H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound to a histone H3-H4 tetramer. However, in the presence of excess histones, a Vps75 dimer bound to a histone H3-H4 tetramer predominates. We show the Vps75-H3-H4 interaction is compatible with the histone chaperone Asf1 and deduce a structural model of the Vps75-Asf1-H3-H4 (VAH) co-chaperone complex using the Pulsed Electron-electron Double Resonance (PELDOR) technique and cross-linking MS/MS distance restraints. The model provides a molecular basis for the involvement of both Vps75 and Asf1 in Rtt109 catalysed histone H3 K9 acetylation. In the absence of Asf1 this model can be used to generate a complex consisting of a reconfigured Vps75 tetramer bound to a H3-H4 tetramer. This provides a structural explanation for many of the complexes detected biochemically and illustrates the ability of Vps75 to interact with dimeric or tetrameric H3-H4 using the same interaction surface.


Asunto(s)
Proteínas de Ciclo Celular/química , Chaperonas de Histonas/química , Histonas/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Acetilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochemistry ; 55(30): 4166-72, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387136

RESUMEN

The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.


Asunto(s)
Bacteriófago T7/enzimología , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Bacteriófago T7/genética , Desoxirribonucleasa I/genética , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética
9.
Nucleic Acids Res ; 42(9): 6038-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24688059

RESUMEN

NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron-electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a 'self-chaperoning' type mechanism.


Asunto(s)
Chaperonas Moleculares/química , Proteína 1 de Ensamblaje de Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
10.
Commun Chem ; 6(1): 171, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607991

RESUMEN

Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.

11.
Angew Chem Weinheim Bergstr Ger ; 135(34): e202218783, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515502

RESUMEN

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.

12.
Nucleic Acids Res ; 38(2): 695-707, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19914933

RESUMEN

The (H3-H4)(2) histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3' interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 alphaN helix display increased structural heterogeneity. Flexibility of the H3 alphaN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity.


Asunto(s)
Histonas/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Multimerización de Proteína , Marcadores de Spin , Xenopus laevis
13.
STAR Protoc ; 3(3): 101562, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35874470

RESUMEN

Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).


Asunto(s)
Proteínas de la Membrana , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas de la Membrana/química , Marcadores de Spin
14.
Structure ; 30(4): 608-622.e5, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986323

RESUMEN

The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Canales Iónicos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular
15.
Biochemistry ; 50(46): 9963-72, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22008089

RESUMEN

The four-way (Holliday) DNA junction is the central intermediate in homologous recombination. It is ultimately resolved into two nicked-duplex species by the action of a junction-resolving enzyme. These enzymes are highly selective for the structure of branched DNA, yet as a class these proteins impose significant distortion on their target junctions. Bacteriophage T7 endonuclease I selectively binds and cleaves DNA four-way junctions. The protein is an extremely stable dimer, comprising two globular domains joined by a ß-strand bridge with each active site including amino acids from both polypeptides. The crystal structure of endonuclease I has been solved both as free protein and in complex with a DNA junction, showing that the protein, as well as the junction, becomes distorted on binding. We have therefore used site-specific spin-labeling in conjunction with EPR distance measurements to analyze induced fit in the binding of endonuclease I to a DNA four-way junction. The results support the change in protein structure as it binds to the junction. In addition, we have examined the structure of wild type and catalytically inactive mutants alone and in complex with DNA. We demonstrate the presence of hitherto undefined metastable conformational states within endonuclease I, showing how these states can be influenced by DNA-junction binding or mutations within the active sites. In addition, we demonstrate a previously unobserved instability in the N-terminal α1-helix upon active site mutation. These studies reveal that structural changes in both DNA and protein occur in the action of this junction-resolving enzyme.


Asunto(s)
Bacteriófago T7/enzimología , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Bacteriófago T7/química , Bacteriófago T7/genética , Desoxirribonucleasa I/química , Desoxirribonucleasa I/genética , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Multimerización de Proteína
16.
Org Biomol Chem ; 8(22): 5097-104, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20734014

RESUMEN

The reactions of gallium trichloride with phenyl and deuterio-phenyl azides, as well as with 4-methoxyphenyl azide and deuterium isotopomers, were examined by product analysis, CW EPR spectroscopy and pulsed ENDOR spectroscopy. The products included the corresponding anilines together with 4-aminodiphenylamine type dimers, and polyanilines. Complex CW EPR spectra of the radical cations of the dimers [ArNHC(6)H(4)NH(2)](+)˙ and trimers [ArNHC(6)H(4)NHC(6)H(4)NH(2)](+)˙ were obtained. These EPR spectra were analysed with the help of data from the deuterium-substituted analogues as well as the pulse Davies ENDOR spectra. DFT computations of the radical cations provided corroborating evidence and suggested the unpaired electrons were accommodated in extensive π-delocalised orbitals. A mechanism to account for the reductive conversion of aromatic azides to the corresponding anilines and thence to the dimers and trimers is proposed.

17.
Beilstein J Org Chem ; 6: 713-25, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21049080

RESUMEN

The reactions of group 13 metal trichlorides with aromatic azides were examined by CW EPR and pulsed ENDOR spectroscopies. Complex EPR spectra were obtained from reactions of aluminium, gallium and indium trichlorides with phenyl azides containing a variety of substituents. Analysis of the spectra showed that 4-methoxy-, 3-methoxy- and 2-methoxyphenyl azides all gave 'dimer' radical cations [ArNHC6H4NH2](+•) and trimers [ArNHC6H4NHC6H4NH2](+•) followed by polymers. 4-Azidobenzonitrile, with its electron-withdrawing substituent, did not react. In general the aromatic azides appeared to react most rapidly with AlCl3 but this reagent tended to generate much polymer. InCl3 was the least reactive group 13 halide. DFT computations of the radical cations provided corroborating evidence and suggested that the unpaired electrons were accommodated in extensive π-delocalised orbitals. A mechanism to account for the reductive conversion of aromatic azides to the corresponding anilines and thence to the dimers and trimers is proposed.

18.
Magn Reson (Gott) ; 1(2): 301-313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37904818

RESUMEN

Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high-spin Gd3+ ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the double electron-electron resonance (DEER) experiment. Here we use a high-power (1 kW), wideband, non-resonant system operating at 94 GHz to evaluate DEER measurement protocols using two stiff Gd(III) rulers, consisting of two bis-Gd3+-PyMTA complexes, with separations of 2.1 nm and 6.0 nm, respectively. We show that by avoiding the -12→12 central transition completely, and placing both the pump and the observer pulses on either side of the central transition, we can now observe apparently artefact-free spectra and narrow distance distributions, even for a Gd-Gd distance of 2.1 nm. Importantly we still maintain excellent signal-to-noise ratio and relatively high modulation depths. These results have implications for in-cell EPR measurements at naturally occurring biomolecule concentrations.

19.
J Am Chem Soc ; 131(4): 1348-9, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19138067

RESUMEN

The nucleosome core particle is the fundamental unit of chromatin structure and at its heart is the histone core octamer composed of histones H4, H3, H2A and H2B. To understand the structure dynamics and function of chromatin it is important to be able to probe the structures of its component parts in a variety of ways. Site directed spin-labeling technology has enabled the insertion of nitroxide spin labels at positions on the surface of the H3 histones and these have been assembled into histone octamers. Pulsed EPR, and in particular the PELDOR or DEER experiments have been performed and provided extremely well defined dipolar oscillations, over long time periods. From the PELDOR data we have been able to derive distance distributions of between 60 and 70 A. The distances measured, are among the longest well-defined PELDOR measurements on a biological system to date, spanning the width of the histone core particle and approaching what has been often defined as the limit of distance measurement by this technique. Relatively minor differences to the crystal structures have been observed.


Asunto(s)
Histonas/química , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mutación/genética , Estructura Cuaternaria de Proteína
20.
Chemistry ; 15(13): 3152-67, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19199301

RESUMEN

Spinning wheels: The presented highly resolved multifrequency continuous wave EPR spectra (e.g., see figure) of the heterooctametalic "wheels" Cr(7)M provide rare examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed.We present highly resolved multifrequency (X-, K-, Q- and W-band) continous wave EPR spectra of the heterooctametalic "wheels", [(CH(3))(2)NH(2)][Cr(III) (7)M(II)F(8)((CH(3))(3)CCOO)(16)], hereafter Cr(7)M, where M=Cd, Zn, Mn, and Ni. These experimental spectra provide rare examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up to 10(5) by use of the Davidson algorithm. We show that transferability of spin-Hamiltonian parameters across complexes of the Cr(7)M family is possible and that the spin-Hamiltonian parameters of Cr(7)M do not have sharply defined values, but are rather distributed around a mean value.


Asunto(s)
Algoritmos , Cromo/análisis , Modelos Químicos , Cadmio/análisis , Cadmio/química , Cromo/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón/métodos , Manganeso/análisis , Manganeso/química , Conformación Molecular , Estructura Molecular , Níquel/análisis , Níquel/química , Zinc/análisis , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA