Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 39(33): 11510-11519, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37277942

RESUMEN

The adsorption efficiency of commercial activated carbon toward ibuprofen (IBU) was investigated and described using the adsorption dynamic intraparticle model (ADIM). Although the adsorption capacity of activated carbon has been widely studied, the kinetic models used in the literature are simplified, treating adsorption kinetics with pseudo-kinetic approaches. In this paper, a realistic model is proposed, quantitatively describing the influence of the main operation parameters on the adsorption kinetics and thermodynamics. The thermodynamic data were interpreted successfully with the Freundlich isotherm, deriving an endothermic adsorption mechanism. The system was found to be dominated by the intraparticle diffusion regime, and the collected data allowed the determination of the surface activation energy (ES = 60 ± 7 kJ/mol) and the fluid-solid apparent activation energy (EA = 6 ± 1 kJ/mol). The obtained parameters will be used to design adsorption columns, allowing the scale-up of the process.

2.
J Environ Manage ; 268: 110713, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510447

RESUMEN

In this study, the adsorptive removal of Zn2+, Cu2+, and Cr3+ metal ions from aqueous solutions onto NiO-MgO silica-based nanoparticles (SBNs) has been studied. The effect of several factors such as solution pH, initial concentration, contact time, and coexisting ions on the adsorbed amounts of single Zn2+, Cu2+, and Cr3+ ions have been investigated within an array of batch mode experiments. Interestingly, the adsorption of Cr3+ at high and low concentrations was very fast, and equilibrium was achieved within 2 min compared to Cu2+ and Zn2+ which needed 30 and 60 min to reach equilibrium, respectively. The adsorption equilibrium data fitted very well with the Sips adsorption isotherm model for Cu2+ and Zn2+, and the BET model for Cr3+ ions. The maximum uptake was maintained at 7.23, 13.76, 41.36 (ions per nm2) for Zn2+, Cu2+, and Cr3+, respectively. This equals to 37.69, 69.68, 209.51 (mg adsorbate per g adsorbent), respectively, showing the promising industrial application of those SBNs. Moreover, the adsorption uptake results increase with increasing the pH in the range of 7.0-11.0 for all investigated metal ions. The thermodynamic parameters such as the changes in Gibbs free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) were determined. The adsorption of Zn2+, Cu2+, and Cr3+ was spontaneous, endothermic, and physical for Cu2+ and Cr3+, while exothermic and chemical for Zn2+. The regeneration and reusability studies have proven that the NiO-MgO SBNs can be employed for the adsorptive of these metals repeatedly without impacting the adsorption capacity indicating their sustainability.


Asunto(s)
Metales Pesados , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Óxido de Magnesio , Dióxido de Silicio , Soluciones , Termodinámica , Zinc
3.
Sci Rep ; 13(1): 10619, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391579

RESUMEN

Frictional pressure drop has been grasping the attention of many industrial applications associated with multi-phase and academia. Alongside the United Nations, the 2030 Agenda for Sustainable Development calls for the exigency of giving attention to economic growth, a considerable reduction in power consumption is necessary to co-up with this vision and to adhere to energy-efficient practices. Thereinto, drag-reducing polymers (DRPs), which do not require additional infrastructure, are a much better option for increasing energy efficiency in a series of critical industrial applications. Therefore, this study evaluates the effects of two DRPs-polar water-soluble polyacrylamide (DRP-WS) and nonpolar oil-soluble polyisobutylene (DRP-OS)-on energy efficiency for single-phase water and oil flows, two-phase air-water and air-oil flows, and three-phase air-oil-water flow. The experiments were conducted using two different pipelines; horizontal polyvinyl chloride with an inner diameter of 22.5 mm and horizontal stainless steel with a 10.16 mm internal diameter. The energy-efficiency metrics are performed by investigating the head loss, percentage saving in energy consumption (both per unit pipe length), and throughput improvement percentage (%TI). The larger pipe diameter was used in experiments for both DRPs, and it was discovered that despite the type of flow or variations in liquid and air flow rates, there was a reduction in head loss, an increase in energy savings, and an increase in the throughput improvement percentage. In particular, DRP-WS is found to be more promising as an energy saver and the consequent savings in the infrastructure cost. Hence, equivalent experiments of DRP-WS in two-phase air-water flow using a smaller pipe diameter show that the head loss drastically increases. However, the percentage saving in power consumption and throughput improvement percentage is significantly compared with that found in the larger pipe. Thus, this study found that DRPs can improve energy efficiency in various industrial applications, with DRP-WS being particularly promising as an energy saver. However, the effectiveness of these polymers may vary depending on the flow type and pipe diameter.


Asunto(s)
Benchmarking , Productos Biológicos , Desarrollo Económico , Fricción , Polímeros
4.
Environ Sci Pollut Res Int ; 30(50): 109162-109180, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770741

RESUMEN

Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Tetraciclina/química , Antibacterianos , Carbón Orgánico/química , Hidróxidos/química , Cinética
5.
Environ Sci Pollut Res Int ; 29(51): 77992-78008, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35688985

RESUMEN

In this work, the effective adsorption and the subsequent photodegradation activity, of TiO2 brookite nanoparticles, for the removal of anionic dyes, namely, Alizarin Red S (ARS) and Bromocresol Green (BCG) were studied. Batch adsorption experiments were conducted to investigate the effect of both dyes' concentration, contact time, and temperature. Photodegradation experiments for the adsorbed dyes were achieved using ultraviolet light illumination (6 W, λ = 365 nm). The single adsorption isotherms were fitted to the Sips model. The binary adsorption isotherms were fitted using the Extended-Sips model. The results of adsorption isotherms showed that the estimated maximum adsorption uptakes in the binary system were around 140 mg g-1 and 45.5 mg g-1 for ARS and BCG, respectively. In terms of adsorption kinetics, the uptake toward ARS was faster than BCG molecules in which the equilibrium was obtained in 7 min for ARS, while it took 180 min for BCG. Moreover, the thermodynamics results showed that the adsorption process was spontaneous for both anionic dyes. All these macroscopic competitive adsorption results indicate high selectivity toward ARS molecules in the presence of BCG molecules. Additionally, the TiO2 nanoparticles were successfully regenerated using UV irradiation. Moreover, molecular dynamics computational modeling was performed to understand the molecules' optimum coordination, TiO2 geometry, adsorption selectivity, and binary solution adsorption energies. The simulation energies distribution exhibits lower adsorption energies for ARS in the range from - 628 to - 1046 [Formula: see text] for both single and binary systems. In addition to that, the water adsorption energy was found to be between - 42 and - 209 [Formula: see text].


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Verde de Bromocresol , Simulación de Dinámica Molecular , Vacuna BCG , Colorantes , Cinética , Agua , Concentración de Iones de Hidrógeno , Termodinámica , Soluciones
6.
RSC Adv ; 9(61): 35483-35498, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35528094

RESUMEN

The competitive adsorption of cationic and anionic model molecules; methylene blue (MB) and acid red 88 (AR88), respectively, in aqueous solutions onto NiO and/or MgO SBNs was studied. Adsorption isotherms, kinetics and pH effect were investigated in batch modes. Computational modeling was conducted on Acclerys Material Studio for MB and AR88 adsorption. pH study showed that the adsorption is strongly pH dependent, increases for MB while decreases for AR88 with increasing the pH from 4 to 11. Isotherm studies revealed that the Sips model was the best fit for both molecules in single cases, and thus the Extended-Sips model for the binary systems. The kinetics for the binary systems were well-described by the external mass transfer model; thus, film diffusion is the most dominant in the adsorption of both organic onto the SBNs. The adsorption uptakes in binary systems exceed 130 mg g-1 for AR88 (167.7 MgO-SBNs, 132.93 NiO-SBNs, and 178.5 mg g-1 NiO-MgO-SBN), while it reached an uptake of 76.2 MgO-SBNs, 81.5 NiO-SBNs, and 94.7 mg g-1 NiO-MgO-SBNs for MB within the time needed to reach equilibrium (10 min). The adsorption of these two molecules in binary systems showed a synergistic effect onto the three types of SBNs, that enhanced the adsorption uptakes. Computational modeling confirmed the synergistic effect, the adsorption energy of binary systems was lower than that in single systems. Regeneration study was conducted over four adsorption cycles to confirm the sustainability of SBNs. They were stable under thermal oxidation at 400 °C, without any impact on the adsorption capacity.

7.
J Colloid Interface Sci ; 461: 396-408, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26414422

RESUMEN

In this study methylene blue (MB) has been investigated for its adsorption and subsequent catalytic thermo-oxidative decomposition on surface of maghemite (γ-Fe2O3) nanoparticles. The experimental adsorption isotherm fit well to the Freundlich model, indicating multi-sites adsorption. Computational modeling of the interaction between the MB molecule and γ-Fe2O3 nanoparticle surface was carried out to get more insights into its adsorption behavior. Adsorption energies of MB molecules on the surface indicated that there are different adsorption sites on the surface of γ-Fe2O3 confirming the findings regarding the adsorption isotherm. The catalytic activity of the γ-Fe2O3 nanoparticles toward MB thermo-oxidative decomposition has been confirmed by subjecting the adsorbed MB to a thermo oxidation process up to 600 °C in a thermogravimetric analyzer. The experimental results showed a catalytic activity for post adsorption oxidation. The oxidation kinetics were studied using the Ozawa-Flyn-Wall (OFW) corrected method. The most probable mechanism functions were fifth and third orders for virgin MB and MB adsorbed onto γ-Fe2O3 nanoparticles, respectively. Moreover, the results of thermodynamic transition state parameters, namely changes in Gibbs free energy of activation (ΔG(‡)), enthalpy of activation (ΔH(‡)), and entropy of activation (ΔS(‡)), emphasized the catalytic activity of γ-Fe2O3 nanoparticles toward MB oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA