Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(30): 42875-42888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884931

RESUMEN

The growth of microalgae under alkaline conditions ensures an ample supply of CO2 from the atmosphere, with a low risk of crashing due to contamination and predators. The present study investigated the mixotrophic cultivation of two alkaliphilic microalgae (Tetradesmus obliquus and Cyanothece sp.) using cheese whey as an organic carbon source. The variation in cheese whey concentration (0.5-4.5% (v/v)), culture pH (7-11), and NaNO3 concentrations (0-2 gL-1) was evaluated using central composite design in response to biomass productivity and the contents of lipids, total proteins, and soluble carbohydrates. Both investigated microalgae effectively utilized cheese whey as an organic carbon source. The optimum conditions for simultaneously maximizing biomass and lipid productivity in T. obliquus were 3.5% (v/v) whey, pH 10.0, and 0.5 g L-1 NaNO3. Under these conditions, the biomass, lipid, soluble carbohydrate, and protein productivities were 48.69, 20.64, 7.02, and 10.97 mg L-1 day-1, respectively. Meanwhile, Cyanothece produced 52.78, 11.42, 4.31, and 7.89 mg L-1 day-1 of biomass, lipid, carbohydrate, and protein, respectively, at 4.5% (v/v) whey, pH 9.0, and 1.0 g L-1 NaNO3. The lipids produced under these conditions were rich in saturated fatty acids (FAs) and monounsaturated FAs, with no polyunsaturated FAs in both microalgae. Moreover, several biodiesel characteristics were estimated, and results fell within the ranges specified by international standards. These findings indicate that the mixotrophic cultivation of alkaliphilic microalgae could open new avenues for promoting microalgae productivity through low-cost biofuel production.


Asunto(s)
Biocombustibles , Biomasa , Queso , Microalgas , Suero Lácteo , Microalgas/metabolismo
2.
Biomed Res Int ; 2020: 3621543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204691

RESUMEN

γ-Linolenic acid (GLA) and carotenoids have attracted much interest due to their nutraceutical and pharmaceutical importance. Mucoromycota, typical oleaginous filamentous fungi, are known for their production of valuable essential fatty acids and carotenoids. In the present study, 81 fungal strains were isolated from different Egyptian localities, out of which 11 Mucoromycota were selected for further GLA and carotenoid investigation. Comparative analysis of total lipids by GC of selected isolates showed that GLA content was the highest in Rhizomucor pusillus AUMC 11616.A, Mucor circinelloides AUMC 6696.A, and M. hiemalis AUMC 6031 that represented 0.213, 0.211, and 0.20% of CDW, respectively. Carotenoid analysis of selected isolates by spectrophotometer demonstrated that the highest yield of total carotenoids (640 µg/g) was exhibited by M. hiemalis AUMC 6031 and M. hiemalis AUMC 6695, and these isolates were found to have a similar carotenoid profile with, ß-carotene (65%), zeaxanthin (34%), astaxanthin, and canthaxanthin (5%) of total carotenoids. The total fatty acids of all tested isolates showed moderate antimicrobial activity against Staphylococcus aureus and Salmonella Typhi, and Penicillium chrysogenum. To the best of our knowledge, this is the first report on the highest yield of total lipid accumulation (51.74% CDW) by a new oleaginous fungal isolate R. pusillus AUMC 11616.A. A new scope for a further study on this strain will be established to optimize and improve its total lipids with high GLA production. So, R. pusillus AUMC 11616.A might be a potential candidate for industrial application.


Asunto(s)
Carotenoides/metabolismo , Ácido Linoleico/biosíntesis , Mucor/metabolismo , Rhizomucor/metabolismo , Ácido gammalinolénico/metabolismo , Antiinfecciosos/farmacología , Egipto , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Liofilización , Metabolismo de los Lípidos , Pruebas de Sensibilidad Microbiana , Mucor/química , Mucor/genética , Mucor/aislamiento & purificación , Filogenia , Rhizomucor/química , Rhizomucor/genética , Rhizomucor/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA