Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38652281

RESUMEN

Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.

2.
Life Sci ; 348: 122688, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710284

RESUMEN

Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1ß, MCP-1, JNK1, and TGF-ß in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.


Asunto(s)
Cadmio , Cardiotoxicidad , Inflamasomas , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Ubiquinona , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Estrés Oxidativo/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Cadmio/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Antioxidantes/farmacología
3.
Life Sci ; 311(Pt B): 121184, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375572

RESUMEN

AIMS: Nephrotoxicity is one of the most serious health consequences of cadmium (Cd) toxic exposure. Cd was associated with nephrotoxicity through different mechanisms including apoptosis, inflammation, and oxidative stress. This study investigated the effects of glimepiride on renal inflammatory reactions and oxidative stress in response to Cd in mice animal model, pointing to the possible role of JNK/NF-кB and PI3K/AKT signaling. MATERIALS AND METHODS: Four groups of animals were created; the control group, the glimepiride group (4 mg/kg; i.p.), CdCl2 nephrotoxic group (6.5 mg/kg; i.p.), and the CdCl2/glimepiride group. On the other hand, molecular docking studies were used to investigate the affinity of glimepiride towards JNK, AKT, and PI3K targets. KEY FINDINGS: The CdCl2 group's serum creatinine and urea levels were found to have a significant increase when compared to the normal group. High expression of 8-OHDG, JNK, AKT, and NGAL was also detected in the CdCl2 group. In addition, coagulative necrosis of the renal tubules and increased immunostaining of NF-κB and PI3K. Furthermore, glimepiride significantly decreased the serum creatinine and urea level and alleviated the degenerative and necrotic changes within the renal tubules. Moreover, the renal NGAL and JNK were suppressed, and oxidants/antioxidants hemostasis was observed. SIGNIFICANCE: The available data show that glimepiride is an attractive strategy for improving the nephrotoxicity associated with CdCl2 through inhibition of JNK/NF-κB, PI3K/AKT inflammatory pathways. From the abovementioned results, glimepiride treatment might be a potential therapeutic approach to treat renal tissue against severe acute renal damage induced by the toxic effects of CdCl2.


Asunto(s)
FN-kappa B , Fosfatidilinositol 3-Quinasas , Ratones , Animales , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cadmio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lipocalina 2 , Creatinina , Simulación del Acoplamiento Molecular , Compuestos de Sulfonilurea/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
4.
Biomedicines ; 10(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35052720

RESUMEN

Colon illnesses, particularly ulcerative colitis, are considered a major cause of death in both men and women around the world. The present study investigated the underlying molecular mechanisms for the potential anti-inflammatory effect of Dapagliflozin (DAPA) against ulcerative colitis (UC) induced by intracolonic instillation of 3% v/v acetic acid (AA). DAPA was administered to rats (1 mg/kg, orally) for two weeks during the treatment regimen. Interestingly, compared to the normal group, a marked increase in the index of colon/body weight, colon weight/colon length ratio, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP), besides decrease in the serum total antioxidant capacity (TAC), were reported in the AA control group (p ˂ 0.05). Elevation in colon monocyte chemoattractant protein (MCP1), Interleukin 18 (IL-18), and inflammasome contents were also reported in the AA control group in comparison with the normal group. In addition, colon-specimen immunohistochemical staining revealed increased expression of nuclear factor-kappa B (NF-κB) and Caspase-3 with histopathological changes. Moreover, DAPA significantly (p ˂ 0.05) reduced the colon/body weight index, colon weight/colon length ratio, clinical evaluation, and macroscopic scoring of UC, and preserved the histopathological architecture of tissues. The inflammatory biomarkers, including colon MCP1, IL-18, inflammasome, Caspase-3, and NF-κB, were suppressed following DAPA treatment and oxidants/antioxidants hemostasis was also restored. Collectively, the present data demonstrate that DAPA represents an attractive approach to ameliorating ulcerative colitis through inhibiting MCP1/NF-κB/IL-18 pathways, thus preserving colon function. Antioxidant, anti-inflammatory, and anti-apoptotic properties of DAPA are implicated in its observed therapeutic benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA