Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 293(15): 5377-5383, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29463680

RESUMEN

Cofilin/ADF proteins are actin-remodeling proteins, essential for actin disassembly in various cellular processes, including cell division, intracellular transport, and motility. Cofilins bind actin filaments cooperatively and sever them preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments. The cooperative binding to actin has been proposed to originate from conformational changes that propagate allosterically from clusters of bound cofilin to bare actin segments. Estimates of the lengths over which these cooperative conformational changes propagate vary dramatically, ranging from 2 to >100 subunits. Here, we present a general, structure-based method for detecting from cryo-EM micrographs small variations in filament geometry (i.e. twist) with single-subunit precision. How these variations correlate with regulatory protein occupancy reveals how far allosteric, conformational changes propagate along filaments. We used this method to determine the effects of cofilin on the actin filament twist. Our results indicate that cofilin-induced changes in filament twist propagate only 1-2 subunits from the boundary into the bare actin segment, independently of the boundary polarity (i.e. irrespective of whether or not the bare actin segment flanks the pointed or barbed-end side of the boundary) and the pyrene fluorophore labeling of actin. These observations indicate that the filament twist changes abruptly at boundaries between bare and cofilin-decorated segments, thereby constraining mechanistic models of cooperative actin filament interactions and severing by cofilin. The methods presented here extend the capability of cryo-EM to analyze biologically relevant deviations from helical symmetry in actin as well as other classes of linear polymers.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/química , Animales , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína , Conejos
2.
J Biol Chem ; 292(48): 19565-19579, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939776

RESUMEN

Many biological processes, including cell division, growth, and motility, rely on rapid remodeling of the actin cytoskeleton and on actin filament severing by the regulatory protein cofilin. Phosphorylation of vertebrate cofilin at Ser-3 regulates both actin binding and severing. Substitution of serine with aspartate at position 3 (S3D) is widely used to mimic cofilin phosphorylation in cells and in vitro The S3D substitution weakens cofilin binding to filaments, and it is presumed that subsequent reduction in cofilin occupancy inhibits filament severing, but this hypothesis has remained untested. Here, using time-resolved phosphorescence anisotropy, electron cryomicroscopy, and all-atom molecular dynamics simulations, we show that S3D cofilin indeed binds filaments with lower affinity, but also with a higher cooperativity than wild-type cofilin, and severs actin weakly across a broad range of occupancies. We found that three factors contribute to the severing deficiency of S3D cofilin. First, the high cooperativity of S3D cofilin generates fewer boundaries between bare and decorated actin segments where severing occurs preferentially. Second, S3D cofilin only weakly alters filament bending and twisting dynamics and therefore does not introduce the mechanical discontinuities required for efficient filament severing at boundaries. Third, Ser-3 modification (i.e. substitution with Asp or phosphorylation) "undocks" and repositions the cofilin N terminus away from the filament axis, which compromises S3D cofilin's ability to weaken longitudinal filament subunit interactions. Collectively, our results demonstrate that, in addition to inhibiting actin binding, Ser-3 modification favors formation of a cofilin-binding mode that is unable to sufficiently alter filament mechanical properties and promote severing.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Imitación Molecular , Factores Despolimerizantes de la Actina/química , Microscopía por Crioelectrón , Microscopía Fluorescente , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Serina/metabolismo
3.
Biophys J ; 110(2): 362-371, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789759

RESUMEN

Intrinsically disordered regions of proteins, which lack unique tertiary structure under physiological conditions, are enriched in phosphorylation sites and in significant local bias toward the polyproline II conformation. The overrepresented coincidence of this posttranslational regulatory signal and local conformational bias within unstructured regions raises a question: can phosphorylation serve to manipulate the conformational preferences of a disordered protein? In this study, we use time-resolved fluorescence resonance energy transfer and a, to our knowledge, novel data analysis method to directly measure the end-to-end distance distribution of a phosphorylatable peptide derived from the human microtubule associated protein tau. Our results show that phosphorylation at threonine or serine extends the end-to-end distance and increases the effective persistence length of the tested model peptides. Unexpectedly, the extension is independent of salt concentration, suggestive of a nonelectrostatic origin. The phosphorylation extension and stiffening effect provides a peptide-scale physical interpretation for the posttranslational regulation of the highly abundant protein-protein interactions found in disordered proteins, as well as a potential insight into the regulatory mechanism of the tau protein's microtubule binding activity.


Asunto(s)
Péptidos/química , Procesamiento Proteico-Postraduccional , Proteínas tau/química , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Péptidos/metabolismo , Fosforilación , Conformación Proteica , Serina/química , Treonina/química , Proteínas tau/metabolismo
4.
Biophys J ; 105(12): 2621-8, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24359734

RESUMEN

Actin assembly, filament mechanical properties, and interactions with regulatory proteins depend on the types and concentrations of salts in solution. Salts modulate actin through both nonspecific electrostatic effects and specific binding to discrete sites. Multiple cation-binding site classes spanning a broad range of affinities (nanomolar to millimolar) have been identified on actin monomers and filaments. This review focuses on discrete, low-affinity cation-binding interactions that drive polymerization, regulate filament-bending mechanics, and modulate interactions with regulatory proteins. Cation binding may be perturbed by actin post-translational modifications and linked equilibria. Partial cation occupancy under physiological and commonly used in vitro solution conditions likely contribute to filament mechanical heterogeneity and structural polymorphism. Site-specific cation-binding residues are conserved in Arp2 and Arp3, and may play a role in Arp2/3 complex activation and actin-filament branching activity. Actin-salt interactions demonstrate the relevance of ion-linked equilibria in the operation and regulation of complex biological systems.


Asunto(s)
Actinas/metabolismo , Cationes Bivalentes/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/química , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína
5.
Biochemistry ; 52(5): 949-58, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23350874

RESUMEN

The native states of globular proteins have been accessed in atomic detail by X-ray crystallography and nuclear magnetic resonance spectroscopy, yet characterization of denatured proteins beyond global metrics has proven to be elusive. Denatured proteins have been observed to exhibit global geometric properties of a random coil polymer. However, this does not preclude the existence of nonrandom, local conformational bias that may be significant for protein folding and function. Indeed, circular dichroism (CD) spectroscopy and other methods have suggested that the denatured state contains considerable local bias to the polyproline II (PII) conformation. Here, we develop predictive models to determine the extent that temperature and the chemical denaturant urea modulate PII propensity. In agreement with our predictive model, PII propensity is observed experimentally to decrease with an increase in temperature. Conversely, urea appears to promote the PII conformation as determined by CD and isothermal titration calorimetry. Importantly, the calorimetric data are in quantitative agreement with a model that predicts the stability of the PII helix relative to other denatured state conformations based upon solvent accessible surface area and experimentally measured Gibbs transfer free energies. The ability of urea to promote the PII conformation can be attributed to the favorable interaction of urea with the peptide backbone. Thus, perturbing denatured states by temperature or cosolutes has subtle, yet opposing, impacts on local PII conformational biases. These results have implications for protein folding as well as for the function of signaling proteins that bind proline-rich targets in globular or intrinsically disordered proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Péptidos/química , Proteínas Son Of Sevenless/química , Urea/química , Secuencia de Aminoácidos , Animales , Calorimetría , Dicroismo Circular , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Temperatura , Termodinámica
6.
Biochem Biophys Res Commun ; 438(4): 728-31, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23911787

RESUMEN

Cofilin is an essential actin filament severing protein that functions in the dynamic remodeling of the actin cytoskeleton. Filament severing activity is most efficient at sub-stoichiometric cofilin binding densities (i.e. <1 cofilin per actin filament subunit), and peaks when the number density of boundaries (i.e. junctions) between bare and cofilin-decorated segments is maximal. A model in which local topological and mechanical discontinuities lead to preferential fragmentation at boundaries accounts for available experimental data, including direct visualization of cofilin and actin during real-time severing events. The boundary-severing model predicts that ligands (e.g. other actin-binding proteins) that compete with cofilin for actin filament binding and modulate cofilin occupancy on filaments will alter the bare-decorated segment boundary density, and thus, the filament severing activity of cofilin. Here, we directly test this model prediction by evaluating the effects of phalloidin and myosin, two ligands that compete with cofilin for filament binding, on the actin filament binding and severing activities of cofilin. Our experiments demonstrate that competitive displacement of cofilin lowers cofilin occupancy and promotes severing when initial cofilin occupancy is high (i.e. >50%). Even in the presence of competitive ligands, maximum severing activity occurs when cofilin-decorated boundary density is highest, consistent with preferential fragmentation at boundaries. We propose a general "severodyne" framework for the modulation of cofilin-mediated actin filament severing by small molecule or actin-binding protein ligands that compete with cofilin for actin filament binding.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Actinas/metabolismo , Animales , Humanos , Miosinas/metabolismo , Faloidina/metabolismo , Unión Proteica , Conejos , Proteínas Recombinantes/metabolismo
7.
Phys Rev E ; 101(3-1): 032409, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32290018

RESUMEN

Cofilin and ADF are cytoskeleton remodeling proteins that cooperatively bind and fragment actin filaments. Bound cofilin molecules do not directly interact with each other, indicating that cooperative binding of cofilin is mediated by the actin filament lattice. Cofilactin is therefore a model system for studying allosteric regulation of self-assembly. How cofilin binding changes structural and mechanical properties of actin filaments is well established. Less is known about the interaction energies and the thermodynamics of filament fragmentation, which describes the collective manner in which the cofilin concentration controls mean actin filament length. Here, we provide a general thermodynamic framework for allosteric regulation of self-assembly, and we use the theory to predict the interaction energies of experimental actin filament length distributions over a broad range of cofilin binding densities and for multiple cofilactin variants. We find that bound cofilin induces changes in nearby actin-actin interactions, and that these allosteric effects are propagated along the filament to affect up to four neighboring cofilin-binding sites (i.e., beyond nearest-neighbor allostery). The model also predicts that cofilin differentially stabilizes and destabilizes longitudinal versus lateral actin-actin interactions, and that the magnitude, range, asymmetry, and even the sign of these interaction energies can be altered using different actin and cofilin mutational variants. These results demonstrate that the theoretical framework presented here can provide quantitative thermodynamic information governing cooperative protein binding and filament length regulation, thus revealing nanometer length-scale interactions from micron length-scale "wet-lab" measurements.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Regulación Alostérica , Modelos Moleculares , Termodinámica
8.
PLoS One ; 12(3): e0174183, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301576

RESUMEN

Without a glucocorticoid (GC) ligand, the transcription factor glucocorticoid receptor (GR) is largely cytoplasmic, with its GC-binding domain held in high affinity conformation by a cluster of chaperones. Binding a GC causes serial dis- and re-associations with chaperones, translocation of the GR to the nucleus, where it binds to DNA sites and associates with coregulatory proteins and basic transcription complexes. Herein, we describe the effects of a potent protective osmolyte, trimethylamine N-oxide (TMAO), on a conditions-dependent "activation-labile" mutant GR (GRact/l), which under GR-activating conditions cannot bind GCs in cells or in cell cytosols. In both cells and cytosols, TMAO restores binding to GRact/l by stabilizing it in complex with chaperones. Cells bathed in much lower concentrations of TMAO than those required in vitro show restoration of GC binding, presumably due to intracellular molecular crowding effects.


Asunto(s)
Corticoesteroides/metabolismo , Metilaminas/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Línea Celular , Humanos , Unión Proteica , Receptores de Glucocorticoides/genética
9.
J Mol Biol ; 427(17): 2782-98, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26168869

RESUMEN

Vinculin is an abundant protein found at cell-cell and cell-extracellular matrix junctions. In muscles, a longer splice isoform of vinculin, metavinculin, is also expressed. The metavinculin-specific insert is part of the C-terminal tail domain, the actin-binding site of both isoforms. Mutations in the metavinculin-specific insert are linked to heart disease such as dilated cardiomyopathies. Vinculin tail domain (VT) both binds and bundles actin filaments. Metavinculin tail domain (MVT) binds actin filaments in a similar orientation but does not bundle filaments. Recently, MVT was reported to sever actin filaments. In this work, we asked how MVT influences F-actin alone or in combination with VT. Cosedimentation and limited proteolysis experiments indicated a similar actin binding affinity and mode for both VT and MVT. In real-time total internal reflection fluorescence microscopy experiments, MVT's severing activity was negligible. Instead, we found that MVT binding caused a 2-fold reduction in F-actin's bending persistence length and increased susceptibility to breakage. Using mutagenesis and site-directed labeling with fluorescence probes, we determined that MVT alters actin interprotomer contacts and dynamics, which presumably reflect the observed changes in bending persistence length. Finally, we found that MVT decreases the density and thickness of actin filament bundles generated by VT. Altogether, our data suggest that MVT alters actin filament flexibility and tunes filament organization in the presence of VT. Both of these activities are potentially important for muscle cell function. Perhaps MVT allows the load of muscle contraction to act as a signal to reorganize actin filaments.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Vinculina/genética , Animales , Sitios de Unión/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Humanos , Mutación , Unión Proteica/genética , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Conejos , Saccharomyces cerevisiae , Vinculina/metabolismo
10.
PLoS One ; 9(4): e94766, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740323

RESUMEN

Cytoskeletal polymers play a fundamental role in the responses of cells to both external and internal stresses. Quantitative knowledge of the mechanical properties of those polymers is essential for developing predictive models of cell mechanics and mechano-sensing. Linear cytoskeletal polymers, such as actin filaments and microtubules, can grow to cellular length scales at which they behave as semiflexible polymers that undergo thermally-driven shape deformations. Bending deformations are often modeled using the wormlike chain model. A quantitative metric of a polymer's resistance to bending is the persistence length, the fundamental parameter of that model. A polymer's bending persistence length is extracted from its shape as visualized using various imaging techniques. However, the analysis methodologies required for determining the persistence length are often not readily within reach of most biological researchers or educators. Motivated by that limitation, we developed user-friendly, multi-platform compatible software to determine the bending persistence length from images of surface-adsorbed or freely fluctuating polymers. Three different types of analysis are available (cosine correlation, end-to-end and bending-mode analyses), allowing for rigorous cross-checking of analysis results. The software is freely available and we provide sample data of adsorbed and fluctuating filaments and expected analysis results for educational and tutorial purposes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Biología Computacional/métodos , Modelos Biológicos , Programas Informáticos , Citoesqueleto de Actina/química , Fenómenos Biomecánicos , Elasticidad , Modelos Moleculares , Reproducibilidad de los Resultados , Estrés Mecánico
11.
FEBS Lett ; 587(8): 1215-9, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23395798

RESUMEN

The continuous assembly and disassembly of actin filament networks is vital for cellular processes including division, growth, and motility. Network remodeling is facilitated by cofilins, a family of essential regulatory proteins that fragment actin filaments. Cofilin induces net structural changes in filaments that render them more compliant in bending and twisting. A model in which local stress accumulation at mechanical discontinuities, such as boundaries of bare and cofilin-decorated filament segments, accounts for the cofilin concentration dependence of severing, including maximal activity at sub-stoichiometric binding densities. Real-time imaging of cofilin-mediated filament severing supports the boundary-fracture model. The severing model predicts that fragmentation is promoted by factors modulating filament mechanics (e.g. tethering, cross-linking, or deformation), possibly explaining enhanced in vivo severing activities.


Asunto(s)
Citoesqueleto de Actina/química , Factores Despolimerizantes de la Actina/química , Actinas/química , Modelos Moleculares , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Fenómenos Biofísicos , Humanos , Cinética , Unión Proteica , Termodinámica
12.
Protein Sci ; 22(4): 405-17, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23341186

RESUMEN

Intrinsically disordered (ID) proteins function in the absence of a unique stable structure and appear to challenge the classic structure-function paradigm. The extent to which ID proteins take advantage of subtle conformational biases to perform functions, and whether signals for such mechanism can be identified in proteome-wide studies is not well understood. Of particular interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded proteins. We experimentally determine a complete calorimetric propensity scale for the PII conformation. Projection of the scale into representative eukaryotic proteomes reveals significant PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded and universally detectable regardless of the method of PII propensity determination. Gene ontology (GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular functions performed by high PII proteins across the proteome. Perhaps the most striking result of the GO analysis is conserved enrichment (P < 10(-8) ) of phosphorylation sites in high PII regions found by all PII scales. Subsequent conformational analysis reveals a phosphorylation-dependent modulation of PII, suggestive of a conserved "tunability" within these regions. In summary, the application of an experimentally determined polyproline II (PII) propensity scale to proteome-wide sequence analysis and gene ontology reveals an enrichment of PII bias near disordered phosphorylation sites that is conserved throughout eukaryotes.


Asunto(s)
Péptidos/química , Fosfoproteínas/química , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Simulación por Computador , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
13.
Methods Enzymol ; 492: 253-82, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21333795

RESUMEN

Conformational fluctuations in proteins have emerged as an important aspect of biological function, having been linked to processes ranging from molecular recognition and catalysis to allostery and signal transduction. In spite of the realization of their importance, however, the connections between fluctuations and function have largely been empirical, even when they have been quantitative. Part of the problem in understanding the role of fluctuations in function is the fact that the mere existence of fluctuations complicates the interpretation of classic mutagenesis approaches. Namely, mutagenesis, which is typically targeted to an internal position (to elicit an effect), will change the fluctuations as well as the structure of the native state. Decoupling these effects is essential to an unambiguous understanding of the role of fluctuations in function. Here, we use a mutation strategy that targets surface-exposed sites in flexible parts of the molecule for mutation to glycine. Such mutations leave the ground-state structure unaffected. As a result, we can assess the nature of the fluctuations, develop a quantitative model relating fluctuations to function (in this case, molecular recognition), and unambiguously resolve the probabilities of the fluctuating states. We show that when this approach is applied to Escherichia coli adenylate kinase (AK), unique thermodynamic and structural insights are obtained, even when classic mutagenesis approaches targeted to the same region yield ambiguous results.


Asunto(s)
Adenilato Quinasa/química , Escherichia coli/enzimología , Adenilato Quinasa/genética , Modelos Moleculares , Mutación , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA