RESUMEN
BACKGROUND: In light of several epidemiological studies, the etiology of recurrent pregnancy loss is complex. One of the most frequent causes of women experiencing inexplicable recurrent pregnancy loss is maternal thrombophilia. Hence, the association between genetic polymorphisms causing thrombophilia and recurrent pregnancy loss needs to be explored. AIM: Is to study the relation of polymorphisms affecting folate pathway mainly, 5-Methytetrahydrofolate-Homocysteine Methyltransferase (MTR A2756G) and 5-Methytetrahydrofolate-Homocysteine MethyltransferaseReductase (MTRR A66G) with recurrent pregnancy loss. METHODS: It is a case-control study. Four hundred participants were enrolled. Two hundred participants with unexplained recurrent pregnancy loss (case group) and two hundred healthy fertile participants (control group). All participants were screened for (MTR A2756G) and (MTRR A66G). DNA was extracted using salting out method followed by genotyping via Real-time PCR. RESULTS: Mutant homozygous genotype (GG) in MTRR A66G was statistically significantly among RPL group in comparison to controls. (GG vs. AA) had odds ratio and confidence interval of 1.22(1.12-2.23), P = 0.012. (GG) increased the liability 1.2 folds for recurrent pregnancy loss. Mutant homozygous genotype (GG) in MTR A2756G was not correlated with the risk of recurrent pregnancy loss. (GG vs.AA) = (1.13(0.56-2.29)), P = 0.7 CONCLUSION: MTRR A66G increases susceptibly for recurrent pregnancy loss among Egyptian women.
Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Aborto Habitual , Ferredoxina-NADP Reductasa , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Aborto Habitual/genética , Estudios de Casos y Controles , Ferredoxina-NADP Reductasa/genética , Adulto , Embarazo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Polimorfismo de Nucleótido Simple/genética , Genotipo , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Alelos , Oportunidad RelativaRESUMEN
BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.
Asunto(s)
Canales de Cloruro , Secuenciación del Exoma , Mutación , Miotonía Congénita , Humanos , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Secuenciación del Exoma/métodos , Canales de Cloruro/genética , Femenino , Masculino , Egipto , Niño , Adolescente , Mutación/genética , Preescolar , Adulto Joven , Lactante , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Linaje , ElectromiografíaRESUMEN
BACKGROUND: Janus kinases (JAKs) are a family of non-receptor protein tyrosine kinases that are expressed in a variety of tissues. Several JAK-controlled cytokine receptor pathways are incriminated in the initiation and progression of psoriasis. Genetic polymorphisms influencing JAK expression would be anticipated to have a great impact on disease activity. OBJECTIVE: The aim of the study was to evaluate the association between JAK1 rs310241 and JAK3 rs3008 polymorphisms and the risk of developing psoriasis. METHODS: Blood samples of 150 patients and 120 controls were screened for nucleotide polymorphisms in JAK1 rs310241 and JAK3 rs3008 genes by using polymerase chain reaction (PCR)-restriction fragment length polymorphism technique. RESULTS: The GG genotype of the JAK1 rs310241 and JAK3 rs3008 genes was significantly associated with an increase in psoriasis risk (p = 0.000, OR = 7.7, 95% CI = 2.8-21.5; p = 0.003, OR = 3.3, 95% CI = 1.5-6.9, respectively). The G allele of both genes was also associated with psoriasis susceptibility (p = 0.000, OR = 2.0, 95% CI = 1.4-2.8; p = 0.002, OR = 1.7, 95% CI = 1.2-2.4, respectively). CONCLUSION: The results indicate a possible association between JAK1 rs310241 and JAK3 rs3008 gene polymorphisms and susceptibility to psoriasis. These findings validate the importance of these molecules in psoriasis and may enable the identification of the individuals most susceptible to the disease.
Asunto(s)
Janus Quinasa 1/genética , Janus Quinasa 3/genética , Polimorfismo de Nucleótido Simple , Psoriasis/genética , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Psoriasis/diagnóstico , Psoriasis/enzimología , Medición de Riesgo , Factores de Riesgo , Adulto JovenRESUMEN
Several neurological disorders, neurodevelopmental disorders, and neurodegenerative disorders have a genetic element with various clinical presentations ranging from mild to severe presentation. Neurological disorders are rare multifactorial disorders characterized by dysfunction and degeneration of synapses, neurons, and glial cells which are essential for movement, coordination, muscle strength, sensation, and cognition. The cerebellum might be involved at any time, either during development and maturation or later in life. Herein, we describe a spectrum of NDDs and NDs in seven patients from six Egyptian families. The core clinical and radiological features of our patients included dysmorphic features, neurodevelopmental delay or regression, gait abnormalities, skeletal deformities, visual impairment, seizures, and cerebellar atrophy. Previously unreported clinical phenotypic findings were recorded. Whole-exome sequencing (WES) was performed followed by an in silico analysis of the detected genetic variants' effect on the protein structure. Three novel variants were identified in three genes MFSD8, AGTPBP1, and APTX, and other previously reported three variants have been detected in "TPP1, AGTPBP1, and PCDHGC4" genes. In this cohort, we described the detailed unique phenotypic characteristics given the identified genetic profile in patients with neurological "neurodevelopmental disorders and neurodegenerative disorders" disorders associated with cerebellar atrophy, hence expanding the mutational spectrum of such disorders.
Asunto(s)
Atrofia , Secuenciación del Exoma , Enfermedades del Sistema Nervioso , Humanos , Secuenciación del Exoma/métodos , Masculino , Femenino , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/diagnóstico , Niño , Atrofia/genética , Preescolar , Cerebelo/patología , Cerebelo/diagnóstico por imagen , Adolescente , Mutación/genética , Fenotipo , LactanteRESUMEN
BACKGROUND: Low-level laser acupuncture (LLLA) biostimulation could contribute to improving the symptoms and communication of children manifesting autism spectrum disorder (ASD). Photobiomodulation might influence the level of brain-derived neurotrophic factor (BDNF) and miR-320 expression. The aim was to investigate the influence of LLLA biostimulation on the severity, language abilities, BDNF levels, and miR-320 in a sample of children with ASD. METHODS: The participants with ASD (N = 30) were randomly divided equally into groups: Group I received LLLA therapy twice a week for 12 sessions and Group II did not receive it. Assessments of the severity, language abilities, BDNF level by enzyme-linked immunosorbent assay, and miR-320 expression by reverse transcriptase quantitative polymerase chain reaction were performed before and after the intervention. A comparison between ASD cases (N = 30) before starting the therapy and neurotypical children (N = 15) regarding miR-320 expression was performed. RESULTS: Following the intervention, the severity of ASD was reduced and language performance was elevated in both groups. The improvement in Group I was higher with (P = 0.002; 0.03). The plasma BDNF level was reduced only in Group I (P < 0.001). The expression level of miR-320 in Group I did not show a change (P = 0.641). A significant difference in miR-320 expression between children with ASD and the neurotypical group (P = 0.000) was observed. CONCLUSION: This study introduces LLLA therapy as a safe and promising therapeutic procedure for improving the core manifestations and communication abilities and for modulating BDNF levels in children with ASD. The reduced expression of miR-320 showed a good diagnostic value in children with ASD.
Asunto(s)
Terapia por Acupuntura , Trastorno del Espectro Autista , MicroARNs , Humanos , Niño , Trastorno del Espectro Autista/diagnóstico , Factor Neurotrófico Derivado del Encéfalo/genética , Rayos Láser , MicroARNs/genéticaRESUMEN
Lysosomal acid lipase (LAL) is a necessary enzyme for the hydrolysis of both triglycerides (TGs) and cholesteryl esters (CEs) in the lysosome. Deficiency of this enzyme encoded by the lipase A (LIPA) gene leads to LAL deficiency (LAL-D). A severe disease subtype of LAL-D is known as Wolman disease (WD), present with diarrhea, hepatosplenomegaly, and adrenal calcification. Untreated patients do not survive more than a year. The aim of this study was to assess the clinical and molecular characterizations of WD patients in Egypt. A total of seven patients (from five unrelated Egyptian families) were screened by targeted next-generation sequencing (NGS), and the co-segregation of causative variants was analyzed using Sanger sequencing. Furthermore, multiple in silico analyses were performed to assess the pathogenicity of the candidate variants. Overall, we identified three diseases causing variants harbored in the LIPA gene. One of these variants is a novel missense variant (NM_000235.4: c.1122 T > G; p. His374Gln), which was classified as a likely pathogenic variant. All variants were predicted to be disease causing using in silico analyses. Our findings expand the spectrum of variants involved in WD which may help to investigate phenotype-genotype correlation and assist genetic counseling. To the best of our knowledge, this is the first clinico-genetic study carried out on Egyptian patients affected with WD.
Asunto(s)
Enfermedad de Wolman , Humanos , Enfermedad de Wolman/tratamiento farmacológico , Enfermedad de Wolman/genética , Lipasa/genética , Egipto , Mutación , Enfermedad de WolmanRESUMEN
BACKGROUND: Aplastic anemia (AA) is a bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia which can lead to life-threatening complications. Our objective was to study the telomerase genes (TERT and TERC) variants, explore their relationship to telomere shortening and TERT gene expression, and to identify variants in the MPL gene within Egyptian AA patients. METHODS: Forty AA patients and 40 sex- and age-matched healthy individuals as the control group were studied through sequencing of TERT, TERC, and MPL genes. Quantitative real-time PCR (qRT-PCR) was used for measuring TERT gene expression. Telomere length (TL) was measured using the Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique. In silico analysis was performed for the prediction of the pathogenicity of resultant variants. RESULTS: Sequencing of MPL, TERT, and TERC genes identified 26 variants. Eleven variants were identified in the MPL gene. Three of them are pathogenic: two missense [c.305 G>A, c.1589 C>T] and one splice site [g.9130T>G]. TERT gene sequencing showed thirteen variants, among them, four novel [c.484G>A, c.499G>A, c.512G>A, c.3164C>G] and two previously reported [c.835G>A, c.2031C>T] were predicted to be pathogenic. Two variants were characterized within the TERC gene; n.514A>G and n.463 C>T. TERT gene expression was downregulated in 70% of studied patients and the Q-FISH technique detected telomere shortening in 82.5% of patients. CONCLUSIONS: Twenty-six pathogenic and benign variants within the TERC, TERT, and MPL genes were identified among the studied AA patients that were in several cases associated with shortened telomeres and/or lower TERT gene expression. Genotype/phenotype correlation in AA patients is of great importance in explaining the disease severity and guiding therapeutic decisions.
RESUMEN
Alopecia intellectual disability syndromes 4 (APMR4) is a very rare autosomal recessive condition caused by a mutation in the LSS gene present on chromosome 21. This syndrome has a clinical heterogeneity mainly exhibited with variable degrees of intellectual disability (ID) and congenital alopecia, as well. Eight families with 13 cases have been previously reported. Herein, we provide a report on an Egyptian family with two affected siblings and one affected fetus who was diagnosed prenatally. Whole-exome sequencing (WES) revealed a novel pathogenic missense variant (c.1609G > T; p.Val537Leu) in the lanosterol synthase gene (LSS) related to the examined patients. The detected variant was confirmed by Sanger sequencing. Segregation analyses confirmed that the parents were heterozygous. Our patient was presented with typical clinical manifestations of the disease in addition to new phenotypic features which included some dysmorphic facies as frontal bossing and bilateral large ears, as well as bilateral hyperextensibility of the fingers and wrist joints, short stature, umbilical hernia, and teeth mineralization defect. This study is the first study in Egypt and the 9th molecularly proven family to date. The aim is to expand the clinical and mutational spectrum of the syndrome. Moreover, the report gives a hint on the importance of prenatal testing and the proper genetic counseling to help the parents to take their own decision based on their beliefs.
Asunto(s)
Alopecia , Discapacidad Intelectual , Humanos , SíndromeRESUMEN
In the present study, two different modified starches; microporous starch (MPS) and cationic microporous starch (CMPS) were synthesized. The granules of MPS that distributed regularly were destroyed after the etherification reaction. The data depicted that the immobilization of horseradish peroxidase (HRP) on CMPS revealed highest immobilization efficiency (86%) at 100â¯mg of CMPS at pHâ¯=â¯6.0 and 100â¯units of enzyme. After 10 reuses of the CMPS-HRP, it retained 66% of initial activity. The soluble HRP showed broad pH optimum of 6.0-7.0, which changed to sharp pHâ¯=â¯6.0 for CMPS-HRP. Soluble-HRP and CMPS-HRP showed temperature optima at 30⯰C and 40⯰C, respectively. The CMPS-HRP showed high thermal stability up to 50⯰C compared to the soluble HRP (40⯰C). The Km values of soluble HRP and CMPS-HRP were 6.6 and 10.8â¯mM for H2O2 and 34 and 41.6â¯mM for guaiacol, respectively. CMPS-HRP showed higher affinity toward various substrates than the soluble-HRP. CMPS-HRP showed more resistance against heavy metals, urea, isopropanol, Triton X-100 and trypsin than soluble enzyme. The CMPS-HRP showed higher ability to remove phenol and p-chlorophenol compared to soluble-HRP.