Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuroinflammation ; 17(1): 349, 2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33222687

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease that damages myelin in the central nervous system (CNS). We investigated the profile of CCN3, a known regulator of immune function and a potential mediator of myelin regeneration, in multiple sclerosis in the context of disease state and disease-modifying treatment. METHODS: CCN3 expression was analysed in plasma, immune cells, CSF and brain tissue of MS patient groups and control subjects by ELISA, western blot, qPCR, histology and in situ hybridization. RESULTS: Plasma CCN3 levels were comparable between collective MS cohorts and controls but were significantly higher in progressive versus relapsing-remitting MS and between patients on interferon-ß versus natalizumab. Higher body mass index was associated with higher CCN3 levels in controls as reported previously, but this correlation was absent in MS patients. A significant positive correlation was found between CCN3 levels in matched plasma and CSF of MS patients which was absent in a comparator group of idiopathic intracranial hypertension patients. PBMCs and CD4+ T cells significantly upregulated CCN3 mRNA in MS patients versus controls. In the CNS, CCN3 was detected in neurons, astrocytes and blood vessels. Although overall levels of area immunoreactivity were comparable between non-affected, demyelinated and remyelinated tissue, the profile of expression varied dramatically. CONCLUSIONS: This investigation provides the first comprehensive profile of CCN3 expression in MS and provides rationale to determine if CCN3 contributes to neuroimmunological functions in the CNS.


Asunto(s)
Interferón beta/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Natalizumab/uso terapéutico , Proteína Hiperexpresada del Nefroblastoma/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína Hiperexpresada del Nefroblastoma/genética , Resultado del Tratamiento
2.
Mol Brain ; 11(1): 25, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720228

RESUMEN

One of the unmet clinical needs in demyelinating diseases such as Multiple Sclerosis (MS) is to provide therapies that actively enhance the process of myelin regeneration (remyelination) in the central nervous system (CNS). Oligodendrocytes, the myelinating cells of the CNS, play a central role in remyelination and originate from oligodendrocyte progenitor cells (OPCs). We recently showed that depletion of regulatory T cells (Treg) impairs remyelination in vivo, and that Treg-secreted factors directly enhance oligodendrocyte differentiation. Here we aim to further characterize the dynamics of Treg-enhanced oligodendrocyte differentiation as well as elucidate the cellular components of a murine mixed neuron-glia model. Murine mixed neuron-glia cultures were generated from P2-7 C57BL/6 mice and characterized for percentage of neuronal and glial cell populations prior to treatment at 7 days in vitro (div) as well as after treatment with Treg-conditioned media at multiple timepoints up to 12 div. Mixed neuron-glia cultures consisted of approximately 30% oligodendroglial lineage cells, 20% neurons and 10% microglia. Furthermore, a full layer of astrocytes, that could not be quantified, was present. Treatment with Treg-conditioned media enhanced the proportion of MBP+ oligodendrocytes and decreased the proportion of PDGFRα+ OPCs, but did not affect OPC proliferation or survival. Treg-enhanced oligodendrocyte differentiation was not caused by Treg polarizing factors, was dependent on the number of activation cycles Treg underwent and was robustly achieved by using 5% conditioned media. These studies provide in-depth characterization of a murine mixed neuron-glia model as well as further insights into the dynamics of Treg-enhanced oligodendrocyte differentiation.


Asunto(s)
Modelos Neurológicos , Neuroglía/metabolismo , Neuronas/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Femenino , Masculino , Ratones Endogámicos C57BL , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Factores de Tiempo
3.
Nat Neurosci ; 20(5): 674-680, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28288125

RESUMEN

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Asunto(s)
Encéfalo/fisiología , Vaina de Mielina/fisiología , Regeneración/fisiología , Linfocitos T Reguladores/fisiología , Animales , Encéfalo/ultraestructura , Diferenciación Celular/fisiología , Femenino , Masculino , Ratones , Proteína Hiperexpresada del Nefroblastoma/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología
4.
BMC Syst Biol ; 4: 63, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20470404

RESUMEN

BACKGROUND: In an effort to better understand the molecular networks that underpin macrophage activation we have been assembling a map of relevant pathways. Manual curation of the published literature was carried out in order to define the components of these pathways and the interactions between them. This information has been assembled into a large integrated directional network and represented graphically using the modified Edinburgh Pathway Notation (mEPN) scheme. RESULTS: The diagram includes detailed views of the toll-like receptor (TLR) pathways, other pathogen recognition systems, NF-kappa-B, apoptosis, interferon signalling, MAP-kinase cascades, MHC antigen presentation and proteasome assembly, as well as selected views of the transcriptional networks they regulate. The integrated pathway includes a total of 496 unique proteins, the complexes formed between them and the processes in which they are involved. This produces a network of 2,170 nodes connected by 2,553 edges. CONCLUSIONS: The pathway diagram is a navigable visual aid for displaying a consensus view of the pathway information available for these systems. It is also a valuable resource for computational modelling and aid in the interpretation of functional genomics data. We envisage that this work will be of value to those interested in macrophage biology and also contribute to the ongoing Systems Biology community effort to develop a standard notation scheme for the graphical representation of biological pathways.


Asunto(s)
Recursos Audiovisuales , Redes Reguladoras de Genes/inmunología , Activación de Macrófagos/inmunología , Mapeo de Interacción de Proteínas/métodos , Interferones/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA