Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(6): 101944, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447116

RESUMEN

Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Animales , Glaucoma/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
2.
Exp Eye Res ; 197: 108131, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32622801

RESUMEN

The retina is one of the most metabolically active tissues, yet the processes that control retinal metabolism remains poorly understood. The mTOR complex (mTORC) that drives protein and lipid biogenesis and autophagy has been studied extensively in regards to retinal development and responses to optic nerve injury but the processes that regulate homeostasis in the adult retina have not been determined. We previously demonstrated that normal adult retina has high rates of protein synthesis compared to skeletal muscle, associated with high levels of mechanistic target of rapamycin (mTOR), a kinase that forms multi-subunit complexes that sense and integrate diverse environmental cues to control cell and tissue physiology. This study was undertaken to: 1) quantify expression of mTOR complex 1 (mTORC1)- and mTORC2-specific partner proteins in normal adult rat retina, brain and liver; and 2) to localize these components in normal human, rat, and mouse retinas. Immunoblotting and immunoprecipitation studies revealed greater expression of raptor (exclusive to mTORC1) and rictor (exclusive for mTORC2) in normal rat retina relative to liver or brain, as well as the activating mTORC components, pSIN1 and pPRAS40. By contrast, liver exhibits greater amounts of the mTORC inhibitor, DEPTOR. Immunolocalization studies for all three species showed that mTOR, raptor, and rictor, as well as most other known components of mTORC1 and mTORC2, were primarily localized in the inner retina with mTORC1 primarily in retinal ganglion cells (RGCs) and mTORC2 primarily in glial cells. In addition, phosphorylated ribosomal protein S6, a direct target of the mTORC1 substrate ribosomal protein S6 kinase beta-1 (S6K1), was readily detectable in RGCs, indicating active mTORC1 signaling, and was preserved in human donor eyes. Collectively, this study demonstrates that the inner retina expresses high levels of mTORC1 and mTORC2 and possesses active mTORC1 signaling that may provide cell- and tissue-specific regulation of homeostatic activity. These findings help to define the physiology of the inner retina, which is key for understanding the pathophysiology of optic neuropathies, glaucoma and diabetic retinopathy.


Asunto(s)
Regulación de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , ARN/genética , Enfermedades de la Retina/genética , Células Ganglionares de la Retina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Immunoblotting , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/biosíntesis , Diana Mecanicista del Complejo 2 de la Rapamicina/biosíntesis , Ratones , Ratones Endogámicos C57BL , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Células Ganglionares de la Retina/patología , Transducción de Señal
3.
Diabetologia ; 57(12): 2566-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249235

RESUMEN

AIMS/HYPOTHESIS: Developing beta cells are vulnerable to nutrient environmental signals. Early developmental processes that alter the number of pancreatic progenitors can determine the number of beta cells present at birth. Metformin, the most widely used oral agent for treating diabetes, alters intracellular energy status in part by increasing AMP-activated protein kinase (AMPK) signalling. This study examined the effect of metformin on developing pancreas and beta cells. METHODS: Pancreatic rudiments from CD-1 mice at embryonic day 13.0 (E13.0) were cultured with metformin, 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR, an AMPK activator) or vehicle control in vitro. In another set of studies, pregnant C57BL/6 mice were treated with metformin throughout gestation. Embryonic (E14.0) and neonatal pancreases were then analysed for their morphometry. RESULTS: In vitro metformin treatment led to an increase in the proliferation and number of pancreatic duodenal homeobox 1-positive (PDX1(+)) progenitors. These results were reproduced by in vitro culture of embryonic pancreas rudiments with AICAR, suggesting that AMPK activation was involved. Similarly, metformin administration to pregnant dams induced an increase in both PDX1(+) and neurogenin 3-positive progenitors in the embryonic pancreas at E14.0 and these changes resulted in an increased beta cell fraction in neonates. CONCLUSIONS/INTERPRETATION: These results indicate that exposure to metformin during gestation modulates the early steps of beta cell development (prior to E14.0) towards an increase in the number of pancreatic and endocrine progenitors. These changes ultimately result in a higher beta cell fraction at birth. These findings are of clinical importance given that metformin is currently used for the treatment of gestational diabetes.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Metformina/farmacología , Páncreas/efectos de los fármacos , Animales , Femenino , Ratones , Páncreas/embriología , Embarazo
4.
Am J Physiol Endocrinol Metab ; 306(11): E1305-14, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24735888

RESUMEN

The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, ß-cell mass was significantly reduced in the CL male mice and was associated with reduction in ß-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.


Asunto(s)
Aglomeración/psicología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Resistencia a la Insulina/fisiología , Tejido Adiposo Blanco/anatomía & histología , Tejido Adiposo Blanco/metabolismo , Envejecimiento/fisiología , Animales , Proliferación Celular , Femenino , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/anatomía & histología , Islotes Pancreáticos/fisiología , Leptina/fisiología , Masculino , Ratones , Estado Nutricional , ARN/biosíntesis , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Psicológico/metabolismo , Destete
5.
Nat Commun ; 13(1): 735, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136059

RESUMEN

Insulin receptor (Insr) protein is present at higher levels in pancreatic ß-cells than in most other tissues, but the consequences of ß-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in ß-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined ß-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout ß-cells from female, but not male mice, whereas only male ßInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female ßInsrKO and ßInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter ß-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include ß-cell insulin resistance, which predicts that ß-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female ßInsrKO and ßInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of ß-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that ß-cell insulin resistance in the form of reduced ß-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hiperinsulinismo/genética , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Receptor de Insulina/genética , Animales , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Humanos , Hiperinsulinismo/sangre , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Transgénicos , RNA-Seq , Receptor de Insulina/deficiencia , Factores Sexuales
6.
Proc Natl Acad Sci U S A ; 105(27): 9250-5, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18587048

RESUMEN

Regulation of pancreatic beta cell mass and function is a major determinant for the development of diabetes. Growth factors and nutrients are important regulators of beta cell mass and function. The signaling pathways by which these growth signals modulate these processes have not been completely elucidated. Tsc2 is an attractive candidate to modulate these processes, because it is a converging point for growth factor and nutrient signals. In these experiments, we generated mice with conditional deletion of Tsc2 in beta cells (betaTsc2(-/-)). These mice exhibited decreased glucose levels and hyperinsulinemia in the fasting and fed state. Improved glucose tolerance in these mice was observed as early as 4 weeks of age and was still present in 52-week-old mice. Deletion of Tsc2 in beta cells induced expansion of beta cell mass by increased proliferation and cell size. Rapamycin treatment reversed the metabolic changes in betaTsc2(-/-) mice by induction of insulin resistance and reduction of beta cell mass. The reduction of beta cell mass in betaTsc2(-/-) mice by inhibition of the mTOR/Raptor (TORC1) complex with rapamycin treatment suggests that TORC1 mediates proliferative and growth signals induced by deletion of Tsc2 in beta cells. These studies uncover a critical role for the Tsc2/mTOR pathway in regulation of beta cell mass and carbohydrate metabolism in vivo.


Asunto(s)
Glucosa/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Eliminación de Gen , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Noqueados , Fenotipo , Proteínas Quinasas/metabolismo , Ratas , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia
7.
Gastroenterology ; 136(3): 1091-103, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19121634

RESUMEN

BACKGROUND & AIMS: Extensive evidence suggests that Akt signaling plays an important role in beta-cell mass and function, although its function in the regulation of the different pancreatic fates has not been adequately investigated. The goal of these studies was to assess the role of Akt signaling in the pancreatic differentiation programs. METHODS: For these experiments, we have generated a double reporter mouse model that provides activation of Akt signaling in a cell type-specific manner. This mouse model conditionally overexpresses a constitutively active form of Akt upon Cre-mediated recombination. Activation of Akt signaling in pancreatic progenitors and acinar and beta-cells was achieved by crossing this animal model to specific Cre-lines. RESULTS: We showed that overexpression of a constitutively active Akt in pancreatic and duodenal homeobox 1 (Pdx1) progenitors induced expansion of ductal structures expressing progenitor markers. This expansion resulted in part from increased proliferation of the ductal epithelium. Lineage-tracing experiments in mice with activation of Akt signaling in mature acinar and beta-cells suggested that acinar-to-ductal and beta-cell-to-acinar/ductal transdifferentiation also contributed to the expansion of the ductal compartment. In addition to the changes in cell plasticity, these studies demonstrated that chronic activation of Akt signaling in Pdx1 progenitors induced the development of premalignant lesions and malignant transformation in old mice. CONCLUSIONS: The current work unravels some of the molecular mechanisms of cellular plasticity and reprogramming, and demonstrates for the first time that activation of Akt signaling regulates the fate of differentiated pancreatic cells in vivo.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Páncreas/fisiología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Genes Reporteros , Glucosa/metabolismo , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Integrasas/genética , Ratones , Ratones Transgénicos , Páncreas/citología , Conductos Pancreáticos/citología , Conductos Pancreáticos/fisiología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/fisiología , Células Madre/fisiología , Transactivadores/genética
8.
Genesis ; 46(5): 256-64, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18442046

RESUMEN

The serine-threonine kinase Akt regulates multiple biological processes. An important strategy to study Akt signaling in different tissues is targeted activation of this pathway in vivo. The current studies describe the generation of a mouse model that combines a double reporter system with activation of a constitutively active form of Akt1 (caAkt) in a Cre-dependent manner. Before Cre recombination, these mice express LacZ during development as well as in most adult tissues. After Cre-mediated excision of the LacZ reporter, functionality of the transgene was demonstrated by expression of the caAkt mutant along with the second reporter, EGFP in different pancreatic compartments and in the nervous system. This animal model provides a critical reagent for assessing the effects of Akt activation in specific tissues. The lineage-tracing properties provide a useful tool to study the role of Akt signaling in regulation of differentiation programs during development and plasticity of mature tissues.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Integrasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Recombinación Genética , Animales , Colorantes Fluorescentes/análisis , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/biosíntesis
9.
Invest Ophthalmol Vis Sci ; 59(5): 2042-2053, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677366

RESUMEN

Purpose: Loss of retinal capillary endothelial cells and pericytes through apoptosis is an early event in diabetic retinopathy (DR). Inflammatory pathways play a role in early DR, yet the biochemical mechanisms are poorly understood. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), an inflammatory cytokine-inducible enzyme, on retinal endothelial apoptosis and capillary degeneration in the diabetic retina. Methods: IDO was detected in human and mouse retinas by immunohistochemistry or Western blotting. Interferon-γ (IFN-γ) levels were measured by ELISA. IDO levels were measured in human retinal capillary endothelial cells (HREC) cultured in the presence of IFN-γ ± 25 mM D-glucose. Reactive oxygen species (ROS) were measured using CM-H2DCFDA dye and apoptosis was measured by cleaved caspase-3. The role of IDO in DR was determined in IDO knockout (IDO-/-) mice with streptozotocin-induced diabetes. Results: The IDO and IFN-γ levels were higher in human diabetic retinas with retinopathy relative to nondiabetic retinas. Immunohistochemical data showed that IDO is present in capillary endothelial cells. IFN-γ upregulated the IDO and ROS levels in HREC. The blockade of either IDO or kynurenine monooxygenase led to inhibition of ROS in HREC. Apoptosis through this pathway was inhibited by an ROS scavenger, TEMPOL. Capillary degeneration was significantly reduced in diabetic IDO-/- mice compared to diabetic wild-type mice. Conclusions: The results suggest that the kynurenine pathway plays an important role in the inflammatory damage in the diabetic retina and could be a new therapeutic target for the treatment of DR.


Asunto(s)
Retinopatía Diabética/complicaciones , Células Endoteliales/patología , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Degeneración Retiniana/prevención & control , Vasos Retinianos/patología , Anciano , Animales , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Electroforesis en Gel de Poliacrilamida , Células Endoteliales/enzimología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/enzimología , Vasos Retinianos/enzimología
10.
Diabetes ; 55(2): 297-304, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16443760

RESUMEN

The large Maf family of basic leucine-zipper-containing transcription factors are known regulators of key developmental and functional processes in various cell types, including pancreatic islets. Here, we demonstrate that within the adult pancreas, MafB is only expressed in islet alpha-cells and contributes to cell type-specific expression of the glucagon gene through activation of a conserved control element found between nucleotides -77 to -51. MafB was also shown to be expressed in developing alpha- and beta-cells as well as in proliferating hormone-negative cells during pancreatogenesis. In addition, MafB expression is maintained in the insulin(+) and glucagon(+) cells remaining in mice lacking either the Pax4 or Pax6 developmental regulators, implicating a potentially early role for MafB in gene regulation during islet cell development. These results indicate that MafB is not only important to islet alpha-cell function but may also be involved in regulating genes required in both endocrine alpha- and beta-cell differentiation.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Glucagón/genética , Células Secretoras de Insulina/metabolismo , Factor de Transcripción MafB/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Factor de Transcripción MafB/genética , Ratones , Proteínas Oncogénicas/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
11.
Diabetes ; 55(2): 318-25, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16443763

RESUMEN

Proliferation is the major component for maintenance of beta-cell mass in adult animals. Activation of phosphoinositide 3-kinase/Akt-kinase pathway is a critical regulator of beta-cell mass. Pancreatic beta-cell overexpression of constitutively active Akt in mice (caAkt(Tg)) resulted in marked expansion of beta-cell mass by increase in beta-cell proliferation and size. The current studies provide new insights into the molecular mechanisms involved in beta-cell proliferation by Akt. Proliferation of beta-cells in caAkt(Tg) was associated with increased cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 (cdk4) activity. To determine the role of cdk4 in beta-cell proliferation induced by Akt, we generated caAkt(Tg) mice that were homozygous, heterozygous, or nullizygous for cdk4. The results of these studies showed that deletion of one cdk4 allele significantly reduced beta-cell expansion in caAkt(Tg) mice by decreased proliferation. CaAkt(Tg) mice deficient in cdk4 developed beta-cell failure and diabetes. These experiments suggest that Akt induces beta-cell proliferation in a cdk4-dependent manner by regulation of cyclin D1, cyclin D2, and p21 levels. These data also indicate that alteration in levels of these cell cycle components could affect the maintenance of beta-cell mass in basal states and the adaptation of beta-cells to pathological states resulting in diabetes.


Asunto(s)
Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Animales Recién Nacidos/metabolismo , Proliferación Celular , Ciclina D2 , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal
12.
Diabetes ; 55(12): 3520-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17130500

RESUMEN

beta-Cell cycle progression and proliferation are critical to maintain beta-cell mass in adult mice. Of the cell cycle inhibitors, p27Kip1 is thought to be the primary modulator of the proliferative status in most cell types. p27 plays a role in beta-cell adaptation in genetic models of insulin resistance. To study the role of p27 in beta-cells during physiological conditions and at different stages of beta-cell differentiation, we studied mice deficient of or overexpressing p27. Experiments in p27-deficient mice showed improved glucose tolerance and hyperinsulinemia. These changes were associated with increased islet mass and proliferation. The experiments overexpressing p27 in beta-cells were performed using a doxycycline-inducible model. Interestingly, overexpression of p27 for 16 weeks in beta-cells from adult mice had no effect on glucose tolerance, beta-cell mass, or proliferation. In contrast, induction of p27 expression during beta-cell development or early neonatal period resulted in severe glucose intolerance and reduced beta-cell mass by decreased proliferation. These changes were reversible upon discontinuation of doxycycline. These experiments suggest that p27 is a critical molecule for beta-cell proliferation during beta-cell development and early postnatal life but not for maintenance of adult mass.


Asunto(s)
Glucemia/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Células Secretoras de Insulina/citología , Islotes Pancreáticos/anatomía & histología , Animales , Animales Recién Nacidos , División Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Homeostasis , Islotes Pancreáticos/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Cancer Res ; 65(24): 11447-58, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16357153

RESUMEN

Cyclooxygenase-2 (COX-2) is up-regulated in human colon carcinomas, and its inhibition is associated with a reduction in tumorigenesis and a promotion of apoptosis. However, the mechanisms responsible for the antitumor effects of COX-2 inhibitors and how COX-2 modulates apoptotic signaling have not been clearly defined. We have shown that COX-2 inhibition sensitizes human colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by inducing clustering of the TRAIL receptor DR5 at the cell surface and the redistribution of the death-inducing signaling complex components (DR5, FADD, and procaspase-8) into cholesterol-rich and ceramide-rich domains known as caveolae. This process requires the accumulation of arachidonic acid and sequential activation of acid sphingomyelinase for the generation of ceramide within the plasma membrane outer leaflet. The current study highlights a novel mechanism to circumvent colorectal carcinoma cell resistance to TRAIL-mediated apoptosis using COX-2 inhibitors to manipulate the lipid metabolism within the plasma membrane.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/farmacología , Caveolas/metabolismo , Ceramidas/metabolismo , Neoplasias del Colon/patología , Inhibidores de la Ciclooxigenasa 2/farmacología , Glicoproteínas de Membrana/farmacología , Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Ácido Araquidónico/metabolismo , Caspasa 8 , Caspasas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/terapia , Ciclooxigenasa 2/metabolismo , Resistencia a Antineoplásicos , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF , Células Tumorales Cultivadas
14.
Mol Metab ; 6(6): 560-573, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28580286

RESUMEN

OBJECTIVE: Poor fetal nutrition increases the risk of type 2 diabetes in the offspring at least in part by reduced embryonic ß-cell growth and impaired function. However, it is not entirely clear how fetal nutrients and growth factors impact ß-cells during development to alter glucose homeostasis and metabolism later in life. The current experiments aimed to test the impact of fetal nutrients and growth factors on endocrine development and how these signals acting on mTOR signaling regulate ß-cell mass and glucose homeostasis. METHOD: Pancreatic rudiments in culture were used to study the role of glucose, growth factors, and amino acids on ß-cell development. The number and proliferation of pancreatic and endocrine progenitor were assessed in the presence or absence of rapamycin. The impact of mTOR signaling in vivo on pancreas development and glucose homeostasis was assessed in models deficient for mTOR or Raptor in Pdx1 expressing pancreatic progenitors. RESULTS: We found that amino acid concentrations, and leucine in particular, enhance the number of pancreatic and endocrine progenitors and are essential for growth factor induced proliferation. Rapamycin, an mTORC1 complex inhibitor, reduced the number and proliferation of pancreatic and endocrine progenitors. Mice lacking mTOR in pancreatic progenitors exhibited hyperglycemia in neonates, hypoinsulinemia and pancreatic agenesis/hypoplasia with pancreas rudiments containing ductal structures lacking differentiated acinar and endocrine cells. In addition, loss of mTORC1 by deletion of raptor in pancreatic progenitors reduced pancreas size with reduced number of ß-cells. CONCLUSION: Together, these results suggest that amino acids concentrations and in particular leucine modulates growth responses of pancreatic and endocrine progenitors and that mTOR signaling is critical for these responses. Inactivation of mTOR and raptor in pancreatic progenitors suggested that alterations in some of the components of this pathway during development could be a cause of pancreatic agenesis/hypoplasia and hyperglycemia.


Asunto(s)
Aminoácidos/deficiencia , Diferenciación Celular , Células Madre Embrionarias/citología , Trastornos Nutricionales en el Feto/metabolismo , Trastornos del Metabolismo de la Glucosa/metabolismo , Células Secretoras de Insulina/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Aminoácidos/metabolismo , Animales , Proliferación Celular , Células Madre Embrionarias/metabolismo , Femenino , Trastornos del Metabolismo de la Glucosa/etiología , Células Secretoras de Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Embarazo , Transducción de Señal
15.
Diabetes ; 66(8): 2150-2162, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28546423

RESUMEN

Regulation of glucose homeostasis by insulin depends on ß-cell growth and function. Nutrients and growth factor stimuli converge on the conserved protein kinase mechanistic target of rapamycin (mTOR), existing in two complexes, mTORC1 and mTORC2. To understand the functional relevance of mTOR enzymatic activity in ß-cell development and glucose homeostasis, we generated mice overexpressing either one or two copies of a kinase-dead mTOR mutant (KD-mTOR) transgene exclusively in ß-cells. We examined glucose homeostasis and ß-cell function of these mice fed a control chow or high-fat diet. Mice with two copies of the transgene [RIPCre;KD-mTOR (Homozygous)] develop glucose intolerance due to a defect in ß-cell function without alterations in ß-cell mass with control chow. Islets from RIPCre;KD-mTOR (Homozygous) mice showed reduced mTORC1 and mTORC2 signaling along with transcripts and protein levels of Pdx-1. Islets with reduced mTORC2 signaling in their ß-cells (RIPCre;Rictorfl/fl) also showed reduced Pdx-1. When challenged with a high-fat diet, mice carrying one copy of KD-mTOR mutant transgene developed glucose intolerance and ß-cell insulin secretion defect but showed no changes in ß-cell mass. These findings suggest that the mTOR-mediated signaling pathway is not essential to ß-cell growth but is involved in regulating ß-cell function in normal and diabetogenic conditions.


Asunto(s)
Intolerancia a la Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Aumento de la Célula , Dieta Alta en Grasa/efectos adversos , Expresión Génica/fisiología , Homeostasis/fisiología , Insulina/metabolismo , Células Secretoras de Insulina/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Transgénicos , Proteínas Quinasas/deficiencia , Transducción de Señal
16.
Int J Biochem Cell Biol ; 38(2): 157-63, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16213777

RESUMEN

The serine-threonine kinase Akt also known as protein kinase B is one of the most studied molecules. In addition to the important role in carcinogenesis, Akt is a major regulator of carbohydrate metabolism. Akt mediates insulin-dependent glucose uptake in insulin-sensitive tissues. Recent evidence underscores the importance of Akt for regulation of beta-cell mass and function. This review summarizes current findings concerning the molecular mechanisms, downstream signaling pathways, and critical components involved in regulation of beta-cell mass and function by Akt. The results of these observations suggest that elucidation of critical downstream effectors of this signaling pathway could generate promising molecules as a potential target to induce proliferation and survival of beta-cells.


Asunto(s)
Células Secretoras de Insulina/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis , Proliferación Celular , Activación Enzimática , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética
17.
Islets ; 8(2): 35-47, 2016 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-26950054

RESUMEN

The fetal environment plays a decisive role in modifying the risk for developing diabetes later in life. Developing novel methodology for noninvasive imaging of ß-cell development in vivo under the controlled physiological conditions of the host can serve to understand how this environment affects ß-cell growth and differentiation. A number of culture models have been designed for pancreatic rudiment but none match the complexity of the in utero or even normal physiological environment. Speier et al. recently developed a platform of noninvasive in vivo imaging of pancreatic islets using the anterior chamber of the eye where islets get vascularized, grow and respond to physiological changes. The same methodology was adapted for the study of pancreatic development. E13.0, still undifferentiated rudiments with fluorescent lineage tracing were implanted in the AC of the eye, allowing the longitudinal study of their growth and differentiation. Within 48 h the anlages get vascularized and grow but their mesenchyme displays a selective growth advantage. The resulting imbalance leads to alteration in the differentiation pattern of the progenitors. Reducing the mesenchyme to its bare minimum before implantation allows the restoration of a proper balance and a development that mimics the normal pancreatic development. These groundbreaking observations demonstrate that the anterior chamber of the eye provides a good system for noninvasive in vivo fluorescence imaging of the developing pancreas under the physiology of the host and can have important implications for designing strategies to prevent or reverse the deleterious effects of hyperglycemia on altering ß-cell function later in life.


Asunto(s)
Cámara Anterior/citología , Diferenciación Celular/fisiología , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Animales , Linaje de la Célula/fisiología , Fluorescencia , Ratones
18.
J Clin Invest ; 125(7): 2736-47, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26075820

RESUMEN

Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of ß cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased ß cell growth, intrauterine growth restriction (IUGR), and impaired placental development. IUGR is a common complication of human pregnancy that limits the supply of oxygen and nutrients to the developing fetus, leading to diminished embryonic ß cell growth and the onset of T2DM later in life. However, restoration of placental development and the rescue of IUGR by tetraploid embryo complementation did not restore ß cell size or insulin levels in S6K1-/- embryos, suggesting that loss of S6K1 leads to an intrinsic ß cell lesion. Consistent with this hypothesis, reexpression of S6K1 in ß cells of S6K1-/- mice restored embryonic ß cell size, insulin levels, glucose tolerance, and RPS6 phosphorylation, without rescuing IUGR. Together, these data suggest that a nutrient-mediated reduction in intrinsic ß cell S6K1 signaling, rather than IUGR, during fetal development may underlie reduced ß cell growth and eventual development of T2DM later in life.


Asunto(s)
Retardo del Crecimiento Fetal/enzimología , Retardo del Crecimiento Fetal/patología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Animales , Tamaño de la Célula , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Femenino , Prueba de Complementación Genética , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Placentación/genética , Placentación/fisiología , Embarazo , Embarazo en Diabéticas/enzimología , Embarazo en Diabéticas/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Tetraploidía
19.
Cell Cycle ; 11(10): 1892-902, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22544327

RESUMEN

The capacity of ß cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of ß cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for ß-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of ß-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in ß cells. This review will discuss recent advances in the understanding of how this pathway regulates ß-cell mass and present data on the role of TSC1 in modulation of ß-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic ß cells results in improved glucose tolerance, hyperinsulinemia and expansion of ß-cell mass that persists with aging.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Animales , Proliferación Celular , Homeostasis , Insulina/metabolismo , Células Secretoras de Insulina/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Sci Rep ; 2: 693, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23012647

RESUMEN

In settings of increased insulin demand, failure to expand pancreatic ß-cells mass leads to diabetes. Genome-wide scans of diabetic populations have uncovered several genes associated with susceptibility to type 2 diabetes and a number of them are part of the Wnt signaling. ß-Catenin, a Wnt downstream effector participates in pancreatic development, however, little is known about its action in mature ß-cells. Deletion of ß-Catenin in Pdx1 pancreatic progenitors leads to a decreased ß-cell mass and impaired glucose tolerance. Surprisingly, loss of ß-catenin made these mice resistant to high fat diet because of their increased energy expenditure and insulin sensitivity due to hyperactivity. The complexity of this phenotype was also explained in part by ectopic expression of Cre recombinase in the hypothalamus. Our data implicates ß-Catenin in the regulation of metabolism and energy homeostasis and suggest that Wnt signaling modulates the susceptibility to diabetes by acting on different tissues.


Asunto(s)
Metabolismo Energético/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Células Secretoras de Insulina/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Eliminación de Gen , Glucosa/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hipotálamo/metabolismo , Insulina/genética , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/citología , Ratones , Ratones Transgénicos , Células Madre/citología , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA