Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 108(46): 18708-13, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22068913

RESUMEN

Although in vitro models have been a cornerstone of anti-cancer drug development, their direct applicability to clinical cancer research has been uncertain. Using a state-of-the-art Taqman-based quantitative RT-PCR assay, we investigated the multidrug resistance (MDR) transcriptome of six cancer types, in established cancer cell lines (grown in monolayer, 3D scaffold, or in xenograft) and clinical samples, either containing >75% tumor cells or microdissected. The MDR transcriptome was determined a priori based on an extensive curation of the literature published during the last three decades, which led to the enumeration of 380 genes. No correlation was found between clinical samples and established cancer cell lines. As expected, we found up-regulation of genes that would facilitate survival across all cultured cancer cell lines evaluated. More troubling, however, were data showing that all of the cell lines, grown either in vitro or in vivo, bear more resemblance to each other, regardless of the tissue of origin, than to the clinical samples they are supposed to model. Although cultured cells can be used to study many aspects of cancer biology and response of cells to drugs, this study emphasizes the necessity for new in vitro cancer models and the use of primary tumor models in which gene expression can be manipulated and small molecules tested in a setting that more closely mimics the in vivo cancer microenvironment so as to avoid radical changes in gene expression profiles brought on by extended periods of cell culture.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Supervivencia Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Investigación Biomédica Traslacional/métodos , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
2.
PLoS One ; 9(5): e96522, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24796865

RESUMEN

Binding of the Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B controls long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. Regulation of this interaction is well-studied biochemically, but not under conditions that mimic the macromolecular crowding found within cells. Notably, previous molecular crowding experiments with lysozyme indicated an effect on the CaMKII holoenzyme conformation. Here, we found that the effect of molecular crowding on Ca2+/CaM-induced CaMKII binding to immobilized GluN2B in vitro depended on the specific crowding reagent. While binding was reduced by lysozyme, it was enhanced by BSA. The ATP content in the BSA preparation caused CaMKII autophosphorylation at T286 during the binding reaction; however, enhanced binding was also observed when autophosphorylation was blocked. Importantly, the positive regulation by nucleotide and BSA (as well as other macromolecular crowding reagents) did not alleviate the requirement for CaMKII stimulation to induce GluN2B binding. The differential effect of lysozyme (14 kDa) and BSA (66 kDa) was not due to size difference, as both dextran-10 and dextran-70 enhanced binding. By contrast, crowding with immunoglobulin G (IgG) reduced binding. Notably, lysozyme and IgG but not BSA directly bound to Ca2+/CaM in an overlay assay, suggesting a competition of lysozyme and IgG with the Ca2+/CaM-stimulus that induces CaMKII/GluN2B binding. However, lysozyme negatively regulated binding even when it was instead induced by CaMKII T286 phosphorylation. Alternative modes of competition would be with CaMKII or GluN2B, and the negative effects of lysozyme and IgG indeed also correlated with specific or non-specific binding to the immobilized GluN2B. Thus, the effect of any specific crowding reagent can differ, depending on its additional direct effects on CaMKII/GluN2B binding. However, the results of this study also indicate that, in principle, macromolecular crowding enhances CaMKII binding to GluN2B.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sitios de Unión , Calmodulina/metabolismo , Potenciación a Largo Plazo , Muramidasa/farmacología , Fosforilación , Albúmina Sérica Bovina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA