Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Mol Med ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489777

RESUMEN

BACKGROUND: Several signaling pathways are involved in the process of angiogenesis, which is one of the most important hallmarks of glioblastoma multiforme (GBM). Identifying related gene variants can help researchers work out what causes anti-angiogenesis drug resistance. OBJECTIVE: The goal of this systematic analysis was to identify all mutations and polymorphisms involved in angiogenesis pathways in GBM and their impact on clinical outcomes. METHODS: The keywords include glioblastoma, angiogenesis, signaling pathway, mutation, polymorphism, and related terms used to search ISI, PubMed, and Scopus for relevant articles published up to January 2022. The PRISMA protocol was used to conduct our systematic review. The related articles were taken into consideration. The risk of bias in the associated articles was surveyed, as well as the article scoring. Two authors collaborated on data extraction. RESULTS: The inclusion criteria were included in 32 articles out of a total of 787 articles. VEGF, HIF1a, EGFR, PI3K, and MAPK are the pathways that have been studied the most. IDH1, VEGF, VEGFR, EGFR, and HIF1a are the genes with the highest frequency of mutations or polymorphisms. CONCLUSION: In conclusion, this study found that angiogenesis in primary or recurrent GBM is linked to gene changes in eleven signaling pathways. However, some of these gene mutations have been researched numerous times in relation to angiogenesis, while others have only been studied once. Understanding these changes will help us employ combination therapies more effectively for GBM patients' survival and personal medicine.

2.
Curr Top Med Chem ; 23(20): 1928-1936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37190812

RESUMEN

GABA is an essential neurotransmitter in tissues other than the brain and has different functions. Cancer displays dysfunctional GABAergic system roles, comprising GAD, GABA, and GABA receptors. Both tumor-suppressing and carcinogenic characteristics of the GABAergic system have been reported in several malignancies. In the development of cancer cells, it plays oncogenesis- related roles. However, in some tumors, such as pancreatic cancer, it exhibits anti-cancer benefits in numerous human trials and animal models. As a result, GABAergic therapy may be used to treat cancer. The oxidative condition and the status of several malignant circumstances significantly influence the final GABAergic function in many tumors. Depending on the type of malignant tissue and other modifications, these roles manifest differently in malignancies. In this review, we, for the first time, concentrated on the oncogenic and tumor suppressor functions of GABA in various neoplasms, as well as its potential therapeutic implications. The significance of tumor suppressor function and the conditions that promote its function as a cancer genesis factor in cancer are discussed in this article.


Asunto(s)
Neoplasias , Ácido gamma-Aminobutírico , Animales , Humanos , Encéfalo , Neoplasias/tratamiento farmacológico
3.
Int J Mol Cell Med ; 12(2): 135-143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38313377

RESUMEN

Glioblastoma multiforme (GBM) is incurable with routine treatments. Ascorbic acid (Asc) has antioxidant and anti-cancer properties. However, its specific anti-cancer mechanisms are only partially understood. In this study, the effect of Asc on the c-Myc, HIF-1α, and lnc-SNHG16 genes in GBM cells and their exosomes was investigated. Cells isolated from the tissue were characterized by the immunocytochemistry method (GFAP+). The cell-doubling time was determined, and FBS-free medium supplemented with Asc (5 mM) was added to the cells. The extracted exosomes in the cell culture medium were scanned by electron microscopy, Zetasizer, and BCA assay. The expression of lnc-SNHG16 in the exosomes and c-Myc and HIF-1α in the treated and control cells was evaluated by real-time PCR. The interactions between Asc and the c-Myc and HIF-1α proteins were studied using the molecular docking method. The cells showed 90-100% GFAP+ in passage 4, with a cell-doubling time of 4.8 days. Exosomal vesicles measuring 98.25-105.9 were observed. Zetasizer results showed a sharp pick at 90 nm. Protein quantitation showed 3.812 µg/ml protein in the exosomes. Lnc-SNHG16 expression was reduced (P = 0.041), and c-Myc was upregulated (P = 0.002). The expression of HIF-1α was not significant in the treated cells. Also, Asc was able to interact and affect c-Myc and HIF-1α. Asc exerts its effect by reducing lnc-SNHG16 expression in exosomes, upregulating c-Myc in GBM cells, and interacting with HIF-1α and c-Myc. Further research is necessary to achieve a full understanding of these findings.

4.
Cell J ; 21(4): 401-409, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31376321

RESUMEN

OBJECTIVE: Approximately 1% of the male population suffers from obstructive or non-obstructive azoospermia. Previous in vitro studies have successfully differentiated mesenchymal stem cells (MSCs) into germ cells. Because of immunemodulating features, safety, and simple isolation, adipose tissue-derived MSCs (AT-MSCs) are good candidates for such studies. However, low availability is the main limitation in using these cells. Different growth factors have been investigated to overcome this issue. In the present study, we aimed to comparatively assess the performance of AT-MSCs cultured under the presence or absence of three different growth factors, epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), following transplantation in testicular torsion-detorsion mice. MATERIALS AND METHODS: This was an experimental study in which AT-MSCs were first isolated from male Naval Medical Research Institute (NMRI) mice. Then, the mice underwent testicular torsion-detorsion surgery and received bromodeoxyuridine (BrdU)-labeled AT-MSCs into the lumen of seminiferous tubules. The transplanted cells had been cultured in different conditioned media, containing the three growth factors and without them. The expression of germ cell-specific markers was evaluated with real-time polymerase chain reaction (PCR) and western-blot. Moreover, immunohistochemical staining was used to trace the labeled cells. RESULTS: The number of transplanted AT-MSCs resided in the basement membrane of seminiferous tubules significantly increased after 8 weeks. The expression levels of Gcnf and Mvh genes in the transplanted testicles by AT-MSCs cultured in the growth factors-supplemented medium was greater than those in the control group (P<0.001 and P<0.05, respectively). The expression levels of the c-Kit and Scp3 genes did not significantly differ from the control group. CONCLUSION: Our findings showed that the use of EGF, LIF and GDNF to culture AT-MSCs can be very helpful in terms of MSC survival and localization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA