Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Calcif Tissue Int ; 109(6): 633-644, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34173012

RESUMEN

Osteogenesis imperfecta type XI (OI-XI) and Bruck syndrome type I (BS1) are two rare disorders caused by biallelic variants in the FKBP10, characterized by early-onset bone fractures and progressive skeletal deformities. The patients with OI-XI, also co-segregated with autosomal-recessive epidermolysis bullosa simplex caused by KRT14 variant, have been reported. In this study, the follow-up clinical features of the patients with OI-XI and BS1 phenotypes due to biallelic FKBP10 variants are compared. The aim of this study is to investigate the follow-up findings of OI-XI and BS1 phenotypes in patients with the FKBP10 variants. A total of 19 children, ten males and nine females, from 16 unrelated families were included in the study. FKBP10 variants were investigated by next-generation sequencing (NGS) based panel gene test or Sanger sequencing. Seventeen patients were followed between 1.5 and 16.8 years, and the last follow-up age was between 2 and 24.6 years (median 10.7 years). They received intravenous bisphosphonate infusions once every 3 months in follow-up period. We identified four different biallelic FKBP10 variants, two of which are novel (c.890_897dup TGATGGAC, p.Gly300Ter and c.1256 + 1G > A) in 16 families. Five of these patients also had findings of epidermolysis bullosa simplex, and the same biallelic c.612T > A (p.Tyr204Ter) variant in KRT14, as well as FKBP10, were identified. Twelve patients were diagnosed with OI-XI; whereas, seven were diagnosed with BS1. The BS1 phenotype was late-onset and the annual fracture number was lower. After bisphosphonate treatment, bone mineral densitometry Z score at L1-L4 increased (p = 0.005) and the number of annual fractures decreased (p = 0.036) in patients with OI-XI. However, no significant effect of bisphosphonate treatment was found on these values in BS1 patients. Despite the treatment, the rate of scoliosis and long bone deformity had increased in both groups at the last examination; and, only two patients could take a few steps with the aid of a walker, while others were not ambulatory, and they used wheelchairs for mobility. We identified two novel variants in FKBP10. Families originating from the same geographic region and having the same variant suggest founder effects. Although the number of fractures decreased with bisphosphonate treatment, none of our patients were able to walk during the follow-up. This study is valuable in terms of showing the follow-up findings of patients with FKBP10 variants for the first time.


Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Adolescente , Adulto , Niño , Preescolar , Difosfonatos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Mutación , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Proteínas de Unión a Tacrolimus/genética , Adulto Joven
2.
Am J Med Genet A ; 185(8): 2488-2495, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33987976

RESUMEN

Loss or decrease of function in runt-related transcription factor 2 encoded by RUNX2 is known to cause a rare autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD). Clinical spectrum and genetic findings in 51 CCD patients from 30 unrelated families are herein presented. In a majority of the patients, facial abnormalities, such as delayed fontanel closure (89%), parietal and frontal bossing (80%), metopic groove (77%), midface hypoplasia (94%), and abnormal mobility of shoulders (90%), were recorded following clinical examination. In approximately one-half of the subjects, wormian bone (51%), short stature (43%), bell-shaped thorax (42%), wide pubic symphysis (50%), hypoplastic iliac wing (59%), and chef's hat sign (44%) presented in available radiological examinations. Scoliosis was identified in 28% of the patients. Investigation of RUNX2 revealed small sequence alterations in 90% and gross deletions in 10% of the patients; collectively, 23 variants including 11 novel changes (c.29_30insT, c.203delAinsCG, c.423 + 2delT, c.443_454delTACCAGATGGGAinsG, c.505C > T, c.594_595delCTinsG, c.636_637insC, c.685 + 5G > A, c.1088G > T, c.1281delC, Exon 6-9 deletion) presented high allelic heterogeneity. Novel c.29_30insT is unique in affecting the P1-driven long isoform of RUNX2, which is expected to disrupt the N-terminal region of RUNX2; this was shown in two unrelated phenotypically discordant patients. The clinical findings highlighted mild intra-familial genotype-phenotype correlation in our CCD cohort.


Asunto(s)
Displasia Cleidocraneal/diagnóstico , Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Alelos , Sustitución de Aminoácidos , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Radiografía , Turquía
3.
Bone ; 155: 116293, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902613

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by increased bone fragility and deformities. Although most patients with OI have heterozygous mutations in COL1A1 or COL1A2, 17 genes have been reported to cause OI, most of which are autosomal recessive (AR) inherited, during the last years. The aim of this study is to determine the mutation spectrum in Turkish OI cohort and to investigate the genotype-phenotype correlation. METHODS: 150 patients from 140 Turkish families with OI phenotype were included in this study. Mutations in OI-related genes were identified using targeted gene panel, MLPA analysis for COL1A1 and whole exome sequencing. 113 patients who had OI disease-causing variants were followed for 1-20 years. RESULTS: OI disease-causing variants were detected in 117 families, of which 62.4% in COL1A1/A2, 35.9% in AR-related genes. A heterozygous variant in IFITM5 and a hemizygous in MBTPS2 were also described, one in each patient. Eighteen biallelic variants (13 novel) were identified in nine genes (FKBP10, P3H1, SERPINF1, TMEM38B, WNT1, BMP1, CRTAP, FAM46A, MESD) among which FKBP10, P3H1 and SERPINF1 were most common. The most severe phenotypes were in patients with FKBP10, SERPINF1, CRTAP, FAM46A and MESD variants. P3H1 patients had moderate, while BMP1 had the mild phenotype. Clinical phenotypes were variable in patients with WNT1 and TMEM38B mutations. We also found mutations in ten genes (PLS3, LRP5, ANO5, SLC34A1, EFEMP2, PRDM5, GORAB, OCRL1, TNFRSF11B, DPH1) associated with diseases presenting clinical features which overlap OI, in eleven families. CONCLUSION: We identified disease-causing mutations in 83.6% in a large Turkish pediatric OI cohort. 40 novel variants were described. Clinical features and long-term follow-up findings of AR inherited OI types and especially very rare biallelic variants were presented for the first time. Unlike previously reported studies, the mutations that we found in P3H1 were all missense, causing a moderate phenotype.


Asunto(s)
Cadena alfa 1 del Colágeno Tipo I/genética , Colágeno Tipo I/genética , Osteogénesis Imperfecta , Anoctaminas/genética , Niño , Genes Recesivos , Estudios de Asociación Genética , Heterocigoto , Humanos , Mutación/genética , Osteogénesis Imperfecta/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA