Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Microbiol ; 2022: 9979683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353523

RESUMEN

The roles of fusion gene in the virulence of Newcastle disease virus are well established, but the extent of its variation among the XIV, XVII, and XVIII genotypes reported in Central Africa and West Africa has until recently been understudied. In this study, virulent Newcastle disease virus (vNDV) was isolated from dead chickens among vaccinated flocks between March and April 2020. Fusion (F) gene was sequenced and analysed for characterization and information about genetic changes. Many substitutions were observed along the region and some of their functions are yet to be determined. Results showed that all study isolates have virulent cleavage site sequence 112-RRRKR-116/F117 and clustered within genotype XIVb. Sequence analysis showed K78R mutation in the A2 antigenic epitope in all isolates and more along the F-gene which varied in some instances within the isolates. Mutation in this A2 antigenic epitope has been reported to induce escape mutation to monoclonal antibodies generated using the NDV LaSota strain. The range of percentage nucleotide and amino acid homology between the study isolates and commercially available vaccine strains is 81.14%-84.39% and 0.175-0.211, respectively. This report provides evidence of vNDV among vaccinated chicken flock and molecular information about circulating vNDV strains in Kano State, Nigeria, which is useful for the development of virus matched vaccines. Newcastle disease (ND) surveillance and molecular analysis of circulating strains in this region should be encouraged and reported. Furthermore, ND outbreaks or cases among vaccinated poultry presented to veterinary clinics should be reported to the state epidemiologist. Nucleotide sequences were assigned accession numbers OK491971-OK491977.

2.
Sci Rep ; 10(1): 16030, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994446

RESUMEN

Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI's (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II-IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.


Asunto(s)
Reacciones Cruzadas/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Anticuerpos/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Variación Genética , Humanos , Inmunidad Humoral , Inmunización , Virus Lassa/patogenicidad , Nigeria/epidemiología , Nucleoproteínas , Proteínas Recombinantes , Sierra Leona/epidemiología , Sobrevivientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA