Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535677

RESUMEN

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Asunto(s)
Conotoxinas , Ratones , Animales , Conotoxinas/farmacología , Conotoxinas/química , Canales de Calcio , Péptidos/química , Células Receptoras Sensoriales/metabolismo , Caracoles
2.
Trends Biochem Sci ; 43(1): 32-43, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29153511

RESUMEN

The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas/química , Proteínas/metabolismo , Humanos , Oxidación-Reducción , Pliegue de Proteína
3.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269596

RESUMEN

The human Fic domain-containing protein (FICD) is a type II endoplasmic reticulum (ER) membrane protein that is important for the maintenance of ER proteostasis. Structural and in vitro biochemical characterisation of FICD AMPylase and deAMPylase activity have been restricted to the soluble ER-luminal domain produced in Escherichia coli. Information about potentially important features, such as structural motifs, modulator binding sites or other regulatory elements, is therefore missing for the approximately 100 N-terminal residues including the transmembrane region of FICD. Expressing and purifying the required quantity and quality of membrane proteins is demanding because of the low yields and poor stability often observed. Here, we produce full-length FICD by combining a Saccharomyces cerevisiae-based platform with green fluorescent protein (GFP) tagging to optimise the conditions for expression, solubilisation and purification. We subsequently employ these conditions to purify milligram quantities of His-tagged FICD per litre of culture, and show that the purified, detergent-solubilised membrane protein is an active deAMPylating enzyme. Our work provides a straightforward methodology for producing not only full-length FICD, but also other membrane proteins in S. cerevisiae for structural and biochemical characterisation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 294(22): 8745-8759, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30975904

RESUMEN

Venomous marine cone snails produce peptide toxins (conotoxins) that bind ion channels and receptors with high specificity and therefore are important pharmacological tools. Conotoxins contain conserved cysteine residues that form disulfide bonds that stabilize their structures. To gain structural insight into the large, yet poorly characterized conotoxin H-superfamily, we used NMR and CD spectroscopy along with MS-based analyses to investigate H-Vc7.2 from Conus victoriae, a peptide with a VI/VII cysteine framework. This framework has CysI-CysIV/CysII-CysV/CysIII-CysVI connectivities, which have invariably been associated with the inhibitor cystine knot (ICK) fold. However, the solution structure of recombinantly expressed and purified H-Vc7.2 revealed that although it displays the expected cysteine connectivities, H-Vc7.2 adopts a different fold consisting of two stacked ß-hairpins with opposing ß-strands connected by two parallel disulfide bonds, a structure homologous to the N-terminal region of the human granulin protein. Using structural comparisons, we subsequently identified several toxins and nontoxin proteins with this "mini-granulin" fold. These findings raise fundamental questions concerning sequence-structure relationships within peptides and proteins and the key determinants that specify a given fold.


Asunto(s)
Conotoxinas/química , Caracol Conus/metabolismo , Cisteína/química , Granulinas/química , Secuencia de Aminoácidos , Animales , Conotoxinas/genética , Conotoxinas/metabolismo , Disulfuros/química , Granulinas/metabolismo , Espectroscopía de Resonancia Magnética , Venenos de Moluscos/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Proc Natl Acad Sci U S A ; 113(12): 3227-32, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26957604

RESUMEN

Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea.


Asunto(s)
Venenos de Moluscos/química , Péptidos/química , Proteína Disulfuro Isomerasas/genética , Secuencia de Aminoácidos , Animales , Caracol Conus , Datos de Secuencia Molecular , Proteína Disulfuro Isomerasas/química , Pliegue de Proteína , Homología de Secuencia de Aminoácido
6.
Traffic ; 17(6): 615-38, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26947578

RESUMEN

The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.


Asunto(s)
Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Animales , Glicosilación , Humanos , Chaperonas Moleculares/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(6): 1743-8, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25605914

RESUMEN

More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail's distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail.


Asunto(s)
Caracol Conus/química , Caracol Conus/fisiología , Insulina/genética , Toxinas Marinas/química , Conducta Predatoria/fisiología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Insulina/análisis , Insulina/síntesis química , Insulina/metabolismo , Toxinas Marinas/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
8.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384459

RESUMEN

Disulfide-rich peptides are highly abundant in nature and their study has provided fascinating insight into protein folding, structure and function. Venomous cone snails belong to a group of organisms that express one of the largest sets of disulfide-rich peptides (conotoxins) found in nature. The diversity of structural scaffolds found for conotoxins suggests that specialized molecular adaptations have evolved to ensure their efficient folding and secretion. We recently showed that canonical protein disulfide isomerase (PDI) and a conotoxin-specific PDI (csPDI) are ubiquitously expressed in the venom gland of cone snails and play a major role in conotoxin folding. Here, we identify cone snail endoplasmic reticulum oxidoreductin-1 (Conus Ero1) and investigate its role in the oxidative folding of conotoxins through reoxidation of cone snail PDI and csPDI. We show that Conus Ero1 preferentially reoxidizes PDI over csPDI, suggesting that the reoxidation of csPDI may rely on an Ero1-independent molecular pathway. Despite the preferential reoxidation of PDI over csPDI, the combinatorial effect of Ero1 and csPDI provides higher folding yields than Ero1 and PDI. We further demonstrate that the highest in vitro folding rates of two model conotoxins are achieved when all three enzymes are present, indicating that these enzymes may act synergistically. Our findings provide new insight into the generation of one of the most diverse classes of disulfide-rich peptides and may improve current in vitro approaches for the production of venom peptides for pharmacological studies.


Asunto(s)
Conotoxinas/química , Caracol Conus/química , Oxidorreductasas/química , Proteína Disulfuro Isomerasas/química , Pliegue de Proteína , Animales , Oxidación-Reducción
9.
EMBO J ; 31(2): 457-70, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22045338

RESUMEN

The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.


Asunto(s)
Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Procesamiento Proteico-Postraduccional , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Animales , Calnexina/química , Calnexina/genética , Línea Celular Tumoral , Cisteína/metabolismo , Perros , Células HeLa , Hemo-Oxigenasa 1/metabolismo , Humanos , Lipoilación , Melanoma/patología , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Transporte de Proteínas
10.
Trends Biochem Sci ; 36(9): 485-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21778060

RESUMEN

Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides. However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process.


Asunto(s)
Disulfuros/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Animales , Cisteína/metabolismo , Retículo Endoplásmico/metabolismo , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mamíferos , Glicoproteínas de Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Vitamina K Epóxido Reductasas , Levaduras/metabolismo
11.
J Biol Chem ; 289(45): 31576-90, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25258323

RESUMEN

For decades, selenium research has been focused on the identification of active metabolites, which are crucial for selenium chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include increased formation of reactive oxygen species, induction of DNA damage, triggering of apoptosis, and inhibition of angiogenesis. Here we reveal that CH3SeH modulates the cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways that occur early during malignant transformation and enable the recognition and elimination of tumors by activating the lymphocyte receptor NKG2D. CH3SeH regulated NKG2D ligands both on the transcriptional and the posttranscriptional levels. CH3SeH induced the transcription of MHC class I polypeptide-related sequence MICA/B and ULBP2 mRNA. However, the induction of cell surface expression was restricted to the ligands MICA/B. Remarkably, our studies showed that CH3SeH inhibited ULBP2 surface transport through inhibition of the autophagic transport pathway. Finally, we identified extracellular calcium as being essential for CH3SeH regulation of NKG2D ligands. A balanced cell surface expression of NKG2D ligands is considered to be an innate barrier against tumor development. Therefore, our work indicates that the application of selenium compounds that are metabolized to CH3SeH could improve NKG2D-based immune therapy.


Asunto(s)
Regulación de la Expresión Génica , Linfocitos/citología , Metanol/análogos & derivados , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Compuestos de Organoselenio/química , Selenio/química , Autofagia , Calcio/química , Línea Celular Tumoral , Membrana Celular/metabolismo , Citotoxicidad Inmunológica/inmunología , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Inhibidores de Histona Desacetilasas/química , Humanos , Inmunidad Innata , Inmunoterapia/métodos , Células Jurkat , Células Asesinas Naturales/metabolismo , Ligandos , Espectrometría de Masas , Metanol/química , Procesamiento Postranscripcional del ARN
12.
EMBO J ; 29(19): 3318-29, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20802462

RESUMEN

The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady-state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1-deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed-disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI-family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1- and glutathione disulphide-mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.


Asunto(s)
Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Células Cultivadas , Concanavalina A/aislamiento & purificación , Cartilla de ADN/genética , Densitometría , Glutatión/metabolismo , Humanos , Inmunoprecipitación , Cinética , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Transfección
13.
J Biol Chem ; 287(31): 26388-99, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22700979

RESUMEN

The human selenoprotein VIMP (VCP-interacting membrane protein)/SelS (selenoprotein S) localizes to the endoplasmic reticulum (ER) membrane and is involved in the process of ER-associated degradation (ERAD). To date, little is known about the presumed redox activity of VIMP, its structure and how these features might relate to the function of the protein in ERAD. Here, we use the recombinantly expressed cytosolic region of VIMP where the selenocysteine (Sec) in position 188 is replaced with a cysteine (a construct named cVIMP-Cys) to characterize redox and structural properties of the protein. We show that Cys-188 in cVIMP-Cys forms a disulfide bond with Cys-174, consistent with the presence of a Cys174-Sec188 selenosulfide bond in the native sequence. For the disulfide bond in cVIMP-Cys we determined the reduction potential to -200 mV, and showed it to be a good substrate of thioredoxin. Based on a biochemical and structural characterization of cVIMP-Cys using analytical gel filtration, CD and NMR spectroscopy in conjunction with bioinformatics, we propose a comprehensive overall structural model for the cytosolic region of VIMP. The data clearly indicate the N-terminal half to be comprised of two extended α-helices followed by a C-terminal region that is intrinsically disordered. Redox-dependent conformational changes in cVIMP-Cys were observed only in the vicinity of the two Cys residues. Overall, the redox properties observed for cVIMP-Cys are compatible with a function as a reductase, and we speculate that the plasticity of the intrinsically disordered C-terminal region allows the protein to access many different and structurally diverse substrates.


Asunto(s)
Proteínas de la Membrana/química , Oxidorreductasas/química , Selenoproteínas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cromatografía en Gel , Dicroismo Circular , Cistina/química , Escherichia coli , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Peso Molecular , Oxidación-Reducción , Oxidorreductasas/biosíntesis , Oxidorreductasas/aislamiento & purificación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Selenoproteínas/biosíntesis , Selenoproteínas/aislamiento & purificación , Tiorredoxinas/química
14.
J Biol Chem ; 287(47): 39513-23, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027870

RESUMEN

Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell.


Asunto(s)
Estrés del Retículo Endoplásmico , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Respuesta de Proteína Desplegada , Acetilcisteína/farmacología , Sustitución de Aminoácidos , Butionina Sulfoximina/farmacología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Depuradores de Radicales Libres/farmacología , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Mutación Missense , Oxidación-Reducción , Oxidorreductasas/genética
15.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 9): 240-246, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642664

RESUMEN

Marine cone snails produce a wealth of peptide toxins (conotoxins) that bind their molecular targets with high selectivity and potency. Therefore, conotoxins constitute valuable biomolecular tools with a variety of biomedical purposes. The Mu8.1 conotoxin from Conus mucronatus is the founding member of the newly identified saposin-like conotoxin class of conotoxins and has been shown to target Cav2.3, a voltage-gated calcium channel. Two crystal structures have recently been determined of Mu8.1 at 2.3 and 2.1 Šresolution. Here, a high-resolution crystal structure of Mu8.1 was determined at 1.67 Šresolution in the high-symmetry space group I4122. The asymmetric unit contained one molecule, with a symmetry-related molecule generating a dimer equivalent to that observed in the two previously determined structures. The high resolution allows a detailed atomic analysis of a water-filled cavity buried at the dimer interface, revealing a tightly coordinated network of waters that shield a lysine residue (Lys55) with a predicted unusually low side-chain pKa value. These findings are discussed in terms of a potential functional role of Lys55 in target interaction.


Asunto(s)
Conotoxinas , Caracol Conus , Animales , Cristalografía por Rayos X , Lisina , Agua
16.
N Biotechnol ; 76: 23-32, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37037303

RESUMEN

Phage display technology is a powerful tool for selecting monoclonal antibodies against a diverse set of antigens. Within toxinology, however, it remains challenging to generate monoclonal antibodies against many animal toxins, as they are difficult to obtain from venom. Recombinant toxins have been proposed as a solution to overcome this challenge, but so far, few have been used as antigens to generate neutralizing antibodies. Here, we describe the recombinant expression of α-cobratoxin in E. coli and its successful application as an antigen in a phage display selection campaign. From this campaign, an scFv (single-chain variable fragment) was isolated with similar binding affinity to a control scFv generated against the native toxin. The selected scFv recognizes a structural epitope, enabling it to inhibit the interaction between the acetylcholine receptor and the native toxin in vitro. This approach represents the first entirely in vitro antibody selection strategy for generating neutralizing monoclonal antibodies against a snake toxin.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Animales , Anticuerpos de Cadena Única/genética , Epítopos , Biblioteca de Péptidos , Escherichia coli/genética , Escherichia coli/metabolismo , Anticuerpos Monoclonales , Venenos de Serpiente/metabolismo , Bacteriófagos/metabolismo
17.
EMBO J ; 27(22): 2977-87, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18833192

RESUMEN

Oxidative maturation of secretory and membrane proteins in the endoplasmic reticulum (ER) is powered by Ero1 oxidases. To prevent cellular hyperoxidation, Ero1 activity can be regulated by intramolecular disulphide switches. Here, we determine the redox-driven shutdown mechanism of Ero1alpha, the housekeeping Ero1 enzyme in human cells. We show that functional silencing of Ero1alpha in cells arises from the formation of a disulphide bond-identified by mass spectrometry--between the active-site Cys(94) (connected to Cys(99) in the active enzyme) and Cys(131). Competition between substrate thiols and Cys(131) creates a feedback loop where activation of Ero1alpha is linked to the availability of its substrate, reduced protein disulphide isomerase (PDI). Overexpression of Ero1alpha-Cys131Ala or the isoform Ero1beta, which does not have an equivalent disulphide switch, leads to augmented ER oxidation. These data reveal a novel regulatory feedback system where PDI emerges as a central regulator of ER redox homoeostasis.


Asunto(s)
Disulfuros/química , Retículo Endoplásmico/química , Isoenzimas/química , Isoenzimas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Animales , Dominio Catalítico , Línea Celular , Cisteína/química , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Glutatión/metabolismo , Homeostasis , Humanos , Isoenzimas/genética , Glicoproteínas de Membrana/genética , Oxidación-Reducción , Oxidorreductasas/genética , Proteína Disulfuro Isomerasas/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(35): 14831-6, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706418

RESUMEN

The quality control system of the endoplasmic reticulum (ER) discriminates between native and nonnative proteins. The latter are degraded by the ER-associated degradation (ERAD) pathway. Whereas many cytosolic and membrane components of this system are known, only few luminal players have been identified. In this study, we characterize ERFAD (ER flavoprotein associated with degradation), an ER luminal flavoprotein that functions in ERAD. Upon knockdown of ERFAD, the degradation of the ERAD model substrate ribophorin 332 is delayed, and the overall level of polyubiquitinated cellular proteins is decreased. We also identify the ERAD components SEL1L, OS-9 and ERdj5, a known reductase of ERAD substrates, as interaction partners of ERFAD. Our data show that ERFAD facilitates the dislocation of certain ERAD substrates to the cytosol, and we discuss the findings in relation to a potential redox function of the protein.


Asunto(s)
Retículo Endoplásmico/metabolismo , Flavoproteínas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Flavoproteínas/química , Flavoproteínas/genética , Glicosilación , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Lectinas , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteínas/metabolismo , Alineación de Secuencia , Ubiquitinación
19.
Gigascience ; 112022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35640874

RESUMEN

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Asunto(s)
Proteómica , Ponzoñas , Animales , Investigación , Serpientes/genética , Transcriptoma , Ponzoñas/química , Ponzoñas/genética
20.
Front Bioeng Biotechnol ; 9: 811905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127675

RESUMEN

Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA