RESUMEN
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) (QIPAVA) increases during exercise breathing air, but it has been proposed that QIPAVA is reduced during exercise while breathing a fraction of inspired oxygen ([Formula: see text]) of 1.00. It has been argued that the reduction in saline contrast bubbles through IPAVA is due to altered in vivo microbubble dynamics with hyperoxia reducing bubble stability, rather than closure of IPAVA. To definitively determine whether breathing hyperoxia decreases saline contrast bubble stability in vivo, the present study included individuals with and without patent foramen ovale (PFO) to determine if hyperoxia also eliminates left heart contrast in people with an intracardiac right-to-left shunt. Thirty-two participants consisted of 16 without a PFO; 8 females, 8 with a PFO; 4 females, and 8 with late-appearing left-sided contrast (4 females) completed five, 4-min bouts of constant-load cycle ergometer exercise (males: 250 W, females: 175 W), breathing an [Formula: see text] = 0.21, 0.40, 0.60, 0.80, and 1.00 in a balanced Latin Squares design. QIPAVA was assessed at rest and 3 min into each exercise bout via transthoracic saline contrast echocardiography and our previously used bubble scoring system. Bubble scores at [Formula: see text]= 0.21, 0.40, and 0.60 were unchanged and significantly greater than at [Formula: see text]= 0.80 and 1.00 in those without a PFO. Participants with a PFO had greater bubble scores at [Formula: see text]= 1.00 than those without a PFO. These data suggest that hyperoxia-induced decreases in QIPAVA during exercise occur when [Formula: see text] ≥ 0.80 and is not a result of altered in vivo microbubble dynamics supporting the idea that hyperoxia closes QIPAVA.
Asunto(s)
Foramen Oval Permeable , Hiperoxia , Masculino , Femenino , Humanos , Hemodinámica/fisiología , Oxígeno , Corazón , Circulación Pulmonar/fisiologíaRESUMEN
Aging is a significant contributor to changes in sleep patterns, which has compounding consequences on cognitive health. A modifiable factor contributing to poor sleep is inadequate and/or mistimed light exposure. However, methods to reliably and continuously collect light levels long-term in the home, a necessity for informing clinical guidance, are not well established. We explored the feasibility and acceptability of remote deployment and the fidelity of long-term data collection for both light levels and sleep within participants' homes. The original TWLITE study utilized a whole-home tunable lighting system, while the current project is an observational study of the light environment already existing in the home. This was a longitudinal, observational, prospective pilot study involving light sensors remotely deployed in the homes of healthy adults (n = 16, mean age: 71.7 years, standard deviation: 5.0 years) who were co-enrolled in the existing Collaborative Aging (in Place) Research Using Technology (CART) sub-study within the Oregon Center for Aging and Technology (ORCATECH). For 12 weeks, light levels were recorded via light sensors (ActiWatch Spectrum), nightly sleep metrics were recorded via mattress-based sensors, and daily activity was recorded via wrist-based actigraphy. Feasibility and acceptability outcomes indicated that participants found the equipment easy to use and unobtrusive. This proof-of-concept, feasibility/acceptability study provides evidence that light sensors can be remotely deployed to assess relationships between light exposure and sleep among older adults, paving the way for measurement of light levels in future studies examining lighting interventions to improve sleep.
Asunto(s)
Actividades Cotidianas , Vida Independiente , Humanos , Anciano , Estudios Prospectivos , Proyectos Piloto , Tecnología de Sensores Remotos/métodosRESUMEN
NEW FINDINGS: What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a lower lung transfer factor for carbon monoxide than those without (PFO- )? What is the main finding and its importance? We found a lower rate constant for carbon monoxide uptake in PFO+ compared with PFO- women, which was physiologically relevant (≥0.5 z-score difference), but not for PFO+ versus PFO- men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung. ABSTRACT: The transfer factor of the lung for carbon monoxide (TLCO ) measure assumes that all cardiac output flows through the pulmonary circuit. However, right-to-left blood flow through a shunt can result in a lower transfer factor than predicted. A patent foramen ovale (PFO) is a potential source of right-to-left shunt that is present in â¼35% of the population, but the effect of PFO on TLCO is unknown. We sought to determine the effect of PFO on the TLCO . We conducted a retrospective analysis of TLCO data from 239 (101 women) participants. Anthropometrics and lung function, including spirometry, plethysmography and TLCO , were compiled from our previously published work. Women, but not men, with a PFO had a significantly lower TLCO and rate constant for carbon monoxide uptake (KCO ) (percentage of predicted and z-score) than women without a PFO. Women and men with a PFO had normal alveolar volumes that did not differ from those without a PFO. Correcting the data for haemoglobin in a subset of subjects did not change the results (n = 58; 25 women). The lower KCO in women with versus without a PFO was physiologically relevant (≥0.5 z-score difference). There was no effect of PFO in men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung.
Asunto(s)
Monóxido de Carbono , Foramen Oval Permeable , Femenino , Humanos , Pulmón , Masculino , Estudios Retrospectivos , Factor de TransferenciaRESUMEN
NEW FINDINGS: What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 h of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This suggests hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in â¼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary oedema (HAPE) is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia per se is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 h of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response.
Asunto(s)
Mal de Altura , Foramen Oval Permeable , Hipertensión Pulmonar , Altitud , Femenino , Humanos , HipoxiaRESUMEN
Sleep disturbances are common in older adults and may contribute to disease progression in certain populations (e.g., Alzheimer's disease). Light therapy is a simple and cost-effective intervention to improve sleep. Primary barriers to light therapy are: (1) poor acceptability of the use of devices, and (2) inflexibility of current devices to deliver beyond a fixed light spectrum and throughout the entirety of the day. However, dynamic, tunable lighting integrated into the native home lighting system can potentially overcome these limitations. Herein, we describe our protocol to implement a whole-home tunable lighting system installed throughout the homes of healthy older adults already enrolled in an existing study with embedded home assessment platforms (Oregon Center for Aging & Technology-ORCATECH). Within ORCATECH, continuous data on room location, activity, sleep, and general health parameters are collected at a minute-to-minute resolution over years of participation. This single-arm longitudinal protocol collected participants' light usage in addition to ORCATECH outcome measures over a several month period before and after light installation. The protocol was implemented with four subjects living in three ORCATECH homes. Technical/usability challenges and feasibility/acceptability outcomes were explored. The successful implementation of our protocol supports the feasibility of implementing and integrating tunable whole-home lighting systems into an automated home-based assessment platform for continuous data collection of outcome variables, including long-term sleep measures. Challenges and iterative approaches are discussed. This protocol will inform the implementation of future clinical intervention trials using light therapy in patients at risk for developing Alzheimer's disease and related conditions.
Asunto(s)
Enfermedad de Alzheimer , Trastornos del Sueño-Vigilia , Anciano , Recolección de Datos , Estudios de Factibilidad , Humanos , IluminaciónRESUMEN
Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.
Asunto(s)
Trastorno de la Conducta del Sueño REM , Electromiografía , Humanos , Músculo Esquelético , Sueño , Sueño REMRESUMEN
NEW FINDINGS: What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a larger alveolar-to-arterial difference in PO2 ( A-aDO2 ) than those without (PFO- ) and/or an exaggerated increase in pulmonary artery systolic pressure (PASP) in response to hypoxia? What is the main finding and its importance? PFO+ had a greater A-aDO2 while breathing air, 16% and 14% O2 , but not 12% or 10% O2 . PASP increased equally in hypoxia between PFO+ and PFO- . These data suggest that PFO+ may not have an exaggerated acute increase in PASP in response to hypoxia. ABSTRACT: Patent foramen ovale (PFO) is present in 30-40% of the population and is a potential source of right-to-left shunt. Accordingly, those with a PFO (PFO+ ) may have a larger alveolar-to-arterial difference in PO2 ( A-aDO2 ) than those without (PFO- ) in normoxia and with mild hypoxia. Likewise, PFO is associated with high-altitude pulmonary oedema, a condition known to have an exaggerated pulmonary pressure response to hypoxia. Thus, PFO+ may also have exaggerated pulmonary pressure increases in response to hypoxia. Therefore, the purposes of the present study were to systematically determine whether or not: (1) the A-aDO2 was greater in PFO+ than in PFO- in normoxia and mild to severe hypoxia and (2) the increase in pulmonary artery systolic pressure (PASP) in response to hypoxia was greater in PFO+ than in PFO- . We measured arterial blood gases and PASP via ultrasound in healthy PFO+ (n = 15) and PFO- (n = 15) humans breathing air and 30 min after breathing four levels of hypoxia (16%, 14%, 12%, 10% O2 , randomized and balanced order) at rest. The A-aDO2 was significantly greater in PFO+ compared to PFO- while breathing air (2.1 ± 0.7 vs. 0.4 ± 0.3 Torr), 16% O2 (1.8 ± 1.2 vs. 0.7 ± 0.8 Torr) and 14% O2 (2.3 ± 1.2 vs. 0.7 ± 0.6 Torr), but not 12% or 10% O2 . We found no effect of PFO on PASP at any level of hypoxia. We conclude that PFO influences pulmonary gas exchange efficiency with mild hypoxia, but not the acute increase in PASP in response to hypoxia.
Asunto(s)
Foramen Oval Permeable/fisiopatología , Hipoxia/fisiopatología , Intercambio Gaseoso Pulmonar , Trastornos Respiratorios/fisiopatología , Adulto , Presión Arterial , Femenino , Humanos , Masculino , Arteria Pulmonar , Adulto JovenRESUMEN
KEY POINTS: The mechanism(s) that regulate hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) are currently unknown. Our previous work has demonstrated that the mechanism of hypoxia-induced QIPAVA is not simply increased cardiac output, pulmonary artery systolic pressure or sympathetic nervous system activity and, instead, it may be a result of hypoxaemia directly. To determine whether it is reduced arterial PO2 (PaO2) or O2 content (CaO2) that causes hypoxia-induced QIPAVA , individuals were instructed to breathe room air and three levels of hypoxic gas at rest before (control) and after CaO2 was reduced by 10% by lowering the haemoglobin concentration (isovolaemic haemodilution; Low [Hb]). QIPAVA , assessed by transthoracic saline contrast echocardiography, significantly increased as PaO2 decreased and, despite reduced CaO2 (via isovolaemic haemodilution), was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA , although where and how this is detected remains unknown. ABSTRACT: Alveolar hypoxia causes increased blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) in healthy humans at rest. However, it is unknown whether the stimulus regulating hypoxia-induced QIPAVA is decreased arterial PO2 (PaO2) or O2 content (CaO2). CaO2 is known to regulate blood flow in the systemic circulation and it is suggested that IPAVA may be regulated similar to the systemic vasculature. Thus, we hypothesized that reduced CaO2 would be the stimulus for hypoxia-induced QIPAVA . Blood volume (BV) was measured using the optimized carbon monoxide rebreathing method in 10 individuals. Less than 5 days later, subjects breathed room air, as well as 18%, 14% and 12.5% O2 , for 30 min each, in a randomized order, before (CON) and after isovolaemic haemodilution (10% of BV withdrawn and replaced with an equal volume of 5% human serum albumin-saline mixture) to reduce [Hb] (Low [Hb]). PaO2 was measured at the end of each condition and QIPAVA was assessed using transthoracic saline contrast echocardiography. [Hb] was reduced from 14.2 ± 0.8 to 12.8 ± 0.7 g dl(-1) (10 ± 2% reduction) from CON to Low [Hb] conditions. PaO2 was no different between CON and Low [Hb], although CaO2 was 10.4%, 9.2% and 9.8% lower at 18%, 14% and 12.5% O2 , respectively. QIPAVA significantly increased as PaO2 decreased and, despite reduced CaO2, was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA . Whether the low PO2 is detected at the carotid body, airway and/or the vasculature remains unknown.
Asunto(s)
Anastomosis Arteriovenosa/fisiopatología , Hipoxia/fisiopatología , Oxígeno/fisiología , Adulto , Determinación del Volumen Sanguíneo , Femenino , Ferritinas/sangre , Humanos , Hierro/sangre , Masculino , Pruebas de Función Respiratoria , Adulto JovenRESUMEN
Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.
Asunto(s)
Envejecimiento , Pulmón/patología , Resistencia de las Vías Respiratorias , Animales , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , RespiraciónRESUMEN
NEW FINDINGS: What is the central question of this study? Several rat models are commonly used to study the physiology of ageing (e.g. Fischer 344 and Brown Norway rats are recommended by the USA National Institute of Ageing). Diaphragm muscle sarcopenia (ageing-related muscle weakness and atrophy) remains incompletely described in these rat models. What is the main finding and its importance? Diaphragm muscle sarcopenia is present in both the Fischer 344 and Brown Norway rat strains, but appears more pronounced in Fischer 344 rats. The risk for respiratory diseases increases in adults >65 years of age, which may be attributable in part to ageing-related weakening and atrophy (i.e. sarcopenia) of the diaphragm muscle (DIAm). The mechanisms underlying DIAm sarcopenia remain unknown. Based on existing evidence, we hypothesized that sarcopenia is most evident in type IIx and/or IIb DIAm fibres, i.e. more fatigable motor units. Currently, the USA National Institute on Aging supports Fischer 344 (F344) and Brown Norway (BN) rat strains for ageing-related research, yet DIAm sarcopenia has not been evaluated comprehensively in either strain. Thus, the present study examined DIAm sarcopenia in older adult F344 (24 months old, 50% survival) and BN rats (32 months old, 50% survival), compared with young adult (6-month-old) F344 and BN rats. Measurements of contractility, contractile protein concentration, fibre type distribution and fibre cross-sectional area were obtained from midcostal DIAm strips. Maximal specific force was reduced by â¼24 and â¼13% in older F344 and BN rats, respectively. Additionally, although the cross-sectional area of type I and IIa DIAm fibres was unchanged in both F344 and BN rats, the cross-sectional area of type IIx and/or IIb DIAm fibres was reduced by â¼20 and â¼15% in F344 and BN rats, respectively. Thus, although there was ageing-related DIAm weakness and atrophy, selective to type IIx and/or IIb DIAm fibres, in both F344 and BN rats, the sarcopenic phenotype was more pronounced in F344 rats.
Asunto(s)
Diafragma/fisiología , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/fisiopatología , Envejecimiento/fisiología , Animales , Masculino , Contracción Muscular/fisiología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344RESUMEN
What is the central question of this study? Do individuals with chronic obstructive pulmonary disease have blood flow through intrapulmonary arteriovenous anastomoses at rest or during exercise? What is the main finding and its importance? Individuals with chronic obstructive pulmonary disease have a greater prevalence of blood flow through intrapulmonary arteriovenous anastomoses at rest than age-matched control subjects. Given that the intrapulmonary arteriovenous anastomoses are large enough to permit venous emboli to pass into the arterial circulation, patients with chronic obstructive pulmonary disease and an elevated risk of thrombus formation may be at risk of intrapulmonary arteriovenous anastomosis-facilitated embolic injury (e.g. stroke or transient ischaemic attack). The pulmonary capillaries prevent stroke by filtering venous emboli from the circulation. Intrapulmonary arteriovenous anastomoses are large-diameter (≥50 µm) vascular connections in the lung that may compromise the integrity of the pulmonary capillary filter and have recently been linked to cryptogenic stroke and transient ischaemic attack. Prothrombotic populations, such as individuals with chronic obstructive pulmonary disease (COPD), may be at increased risk of stroke and transient ischaemic attack facilitated by intrapulmonary arteriovenous anastomoses, but the prevalence and degree of blood flow through intrapulmonary arteriovenous anastomoses in this population has not been fully examined and compared with age-matched healthy control subjects. We used saline contrast echocardiography to assess blood flow through intrapulmonary arteriovenous anastomoses at rest (n = 29 COPD and 19 control subjects) and during exercise (n = 10 COPD and 10 control subjects) in subjects with COPD and age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses was detected in 23% of subjects with COPD at rest and was significantly higher compared with age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses at rest was reduced or eliminated in subjects with COPD after breathing hyperoxic gas. Sixty per cent of subjects with COPD who did not have blood flow through the intrapulmonary arteriovenous anastomoses at rest had blood flow through them during exercise. The combination of blood flow through intrapulmonary arteriovenous anastomoses and potential for thrombus formation in individuals with COPD may permit venous emboli to pass into the arterial circulation and cause stroke and transient ischaemic attack. Breathing supplemental oxygen may reduce this risk in COPD. The link between blood flow through intrapulmonary arteriovenous anastomoses, stroke and transient ischaemic attack is worthy of future investigation in COPD and other populations.
Asunto(s)
Anastomosis Arteriovenosa/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Arterias/metabolismo , Arterias/fisiopatología , Anastomosis Arteriovenosa/metabolismo , Estudios de Casos y Controles , Ecocardiografía/métodos , Ejercicio Físico/fisiología , Prueba de Esfuerzo/métodos , Femenino , Humanos , Hiperoxia/metabolismo , Hiperoxia/fisiopatología , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo , Circulación Pulmonar/fisiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Respiración , Descanso/fisiología , Accidente Cerebrovascular/metabolismoRESUMEN
Intrapulmonary arteriovenous anastomoses (IPAVA) have been known to exist in human lungs for over 60 years. The majority of the work in this area has largely focused on characterizing the conditions in which IPAVA blood flow (QÌIPAVA ) is either increased, e.g. during exercise, acute normobaric hypoxia, and the intravenous infusion of catecholamines, or absent/decreased, e.g. at rest and in all conditions with alveolar hyperoxia (FIO2 = 1.0). Additionally, QÌIPAVA is present in utero and shortly after birth, but is reduced in older (>50 years) adults during exercise and with alveolar hypoxia, suggesting potential developmental origins and an effect of age. The physiological and pathophysiological roles of QÌIPAVA are only beginning to be understood and therefore these data remain controversial. Although evidence is accumulating in support of important roles in both health and disease, including associations with pulmonary arterial pressure, and adverse neurological sequelae, there is much work that remains to be done to fully understand the physiological and pathophysiological roles of IPAVA. The development of novel approaches to studying these pathways that can overcome the limitations of the currently employed techniques will greatly help to better quantify QÌIPAVA and identify the consequences of QÌIPAVA on physiological and pathophysiological processes. Nevertheless, based on currently published data, our proposed working model is that QÌIPAVA occurs due to passive recruitment under conditions of exercise and supine body posture, but can be further modified by active redistribution of pulmonary blood flow under hypoxic and hyperoxic conditions.
Asunto(s)
Anastomosis Arteriovenosa/fisiología , Ejercicio Físico , Consumo de Oxígeno , Circulación Pulmonar , Animales , Ambiente , Humanos , Relación Ventilacion-PerfusiónRESUMEN
Intrapulmonary arteriovenous anastomoses (IPAVA) are large diameter (>50 µm) vascular conduits, present in >95% of healthy humans. Because IPAVA are large diameter pathways that allow blood flow to bypass the pulmonary capillary network, blood flow through IPAVA (QIPAVA) can permit the transpulmonary passage of particles larger than pulmonary capillaries. IPAVA have been known to exist for over 50 years, but their physiological and clinical significance are still being established; although, currently suggested roles for QIPAVA include allowing emboli to reach the systemic circulation and providing a source of shunt. Studying QIPAVA is an important area of research and as the suggested roles become better established, detecting and quantifying QIPAVA may become significantly more important in the clinic. Several techniques that can be used to quantify and/or detect QIPAVA in animals, ex vivo human/animal lungs, and intact healthy humans; microspheres, radiolabeled macroaggregated albumin particles, and saline contrast echocardiography, are reviewed with limitations and advantages to each. The current body of literature using these techniques to study QIPAVA in animals, ex vivo lungs, and healthy humans has established conditions when QIPAVA is present, such as during exercise or with arterial hypoxemia and conditions when QIPAVA is absent, such as at rest or during exercise breathing 100% O2 . Many of these physiological studies have direct application to patient populations and we discuss each of these findings in the context of their potential to influence the clinical utility, and interpretation, of the results from these techniques highlighted in this review.
Asunto(s)
Angiografía/métodos , Fístula Arteriovenosa/fisiopatología , Arteria Pulmonar/anomalías , Arteria Pulmonar/fisiopatología , Venas Pulmonares/anomalías , Venas Pulmonares/fisiopatología , Animales , Fístula Arteriovenosa/diagnóstico , Velocidad del Flujo Sanguíneo , Ecocardiografía/métodos , HumanosRESUMEN
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (QÌ VA /QÌT) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial PO2 difference (A-aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of QÌ VA /QÌT. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg(-1) min(-1) (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg(-1) min(-1) (ATR + 80 ADR). When breathing room air the A-aDO2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculated QÌ VA /QÌT was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A-aDO2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculated QÌ VA /QÌT was +2% in both conditions. During 320 ADR cardiac output (QÌT) and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR only QÌT was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in QÌT rather than PASP.
Asunto(s)
Anastomosis Arteriovenosa/fisiología , Presión Sanguínea , Gasto Cardíaco , Oxígeno/metabolismo , Arteria Pulmonar/fisiología , Adulto , Aire , Anastomosis Arteriovenosa/efectos de los fármacos , Femenino , Humanos , Masculino , Oxígeno/farmacología , Terapia por Inhalación de Oxígeno , Relación Ventilacion-PerfusiónRESUMEN
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) is known to increase in healthy humans during exercise while breathing room air, but is prevented or significantly reduced during exercise while breathing 100% O2, potentially due to vasoconstriction of IPAVAs. Thus, pharmacological interventions that target known pathways regulating the cardiopulmonary circulation may be able to prevent the hyperoxia-induced reduction in IPAVA blood flow (QÌ IPAVA ) during exercise. In nine healthy human subjects, we investigated the effects of sildenafil (100 mg p.o.), nifedipine (20 mg p.o.) and acetazolamide (250 mg p.o. three times a day for 3 days) on QÌ IPAVA at rest and during cycle ergometer exercise at 50, 100, 150, 200 and 250 W, while breathing room air (normoxia) and 100% O2 (hyperoxia). Transthoracic saline contrast echocardiography and a 0-5 bubble scoring system were used to detect and assess QÌ IPAVA qualitatively; ultrasound was used to assess the blood flow velocity oftricuspid regurgitation and the left ventricular outflow tract blood flow to calculate pulmonary artery systolic pressure (PASP) and cardiac output, respectively. Without drugs, bubble scores increased significantly to ≥2 at 150 W in normoxia and to ≤2 at 200 W in hyperoxia. Only nifedipine consistently increased cardiac output at rest and during low-intensity exercise in normoxia and hyperoxia. However, there was no detectable effect of any drug on QÌ IPAVA ; specifically, bubble scores were the same during exercise in either normoxia or hyperoxia. Accordingly, the reduction in QÌ IPAVA during exercise while breathing 100% O2 is likely not to be due to the independent pharmacological mechanisms of action associated with sildenafil, nifedipine or acetazolamide.
Asunto(s)
Acetazolamida/farmacología , Anastomosis Arteriovenosa/efectos de los fármacos , Ejercicio Físico/fisiología , Pulmón/irrigación sanguínea , Nifedipino/farmacología , Oxígeno/metabolismo , Piperazinas/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Sulfonamidas/farmacología , Adulto , Anastomosis Arteriovenosa/fisiología , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Velocidad del Flujo Sanguíneo/fisiología , Prueba de Esfuerzo , Femenino , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Humanos , Hiperoxia/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/fisiología , Masculino , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , Purinas/farmacología , Flujo Sanguíneo Regional/fisiología , Respiración , Citrato de Sildenafil , Adulto JovenAsunto(s)
Displasia Broncopulmonar/epidemiología , Prueba de Esfuerzo/estadística & datos numéricos , Hipertensión Pulmonar/epidemiología , Nacimiento Prematuro/epidemiología , Arteria Pulmonar/fisiopatología , Adolescente , Adulto , Displasia Broncopulmonar/fisiopatología , Comorbilidad , Femenino , Humanos , Hipertensión Pulmonar/fisiopatología , Recién Nacido , Masculino , Nacimiento Prematuro/fisiopatología , Adulto JovenRESUMEN
Individuals with comorbid REM sleep behavior disorder (RBD) and neurotrauma (defined by traumatic brain injury and post-traumatic stress disorder) have an earlier age of RBD symptom onset, increased RBD-related symptom severity and more neurological features indicative of prodromal synucleinopathy compared to RBD only. An early sign of neurodegenerative condition is autonomic dysfunction, which we sought to evaluate by examining heart rate variability during sleep. Participants with overnight polysomnography were recruited from the VA Portland Health Care System. Veterans without neurotrauma or RBD (controls; n=19), with RBD only (RBD, n=14), and with RBD and neurotrauma (RBD+NT, n=19) were evaluated. Eligible 5-minute NREM and REM epochs without apneas/hypopneas, microarousals, and ectopic beats were analyzed for frequency and time domain (e.g. low frequency power, LF; high frequency power, HF; root mean square of successive RR intervals, RMSSD; % of RR intervals that vary ≥50 ms, pNN50) heart rate variability outcomes. Heart rate did not significantly differ between groups in any sleep stage. Time domain and frequency domain variables (e.g., LF power, HF power, RMSSD, and pNN50) were significantly reduced in the RBD and RBD+NT groups compared to controls and RBD only during NREM sleep. There were no group differences detected during REM sleep. These data suggest significant reductions in heart rate variability during NREM sleep in RBD+NT participants, suggesting greater autonomic dysfunction compared to controls or RBD alone. Heart rate variability during sleep may be an early, promising biomarker, yielding mechanistic insight for diagnosis and prognosis of early neurodegeneration in this vulnerable population. STATEMENT OF SIGNIFICANCE: Comorbid REM sleep behavior disorder (RBD) and neurotrauma (NT, traumatic brain injury + post-traumatic stress disorder; RBD+NT) is associated with increased neurodegenerative symptom burden and worsened health. Sleep and autonomic function are integrally and bidirectionally related to neurodegenerative processes. In the current study, we sought to determine if early signs of autonomic dysfunction, measured via heart rate variability (HRV), were present during sleep in comorbid RBD+NT compared to RBD only and controls. Our data show reduced time and frequency domain HRV during NREM sleep in RBD+NT Veterans compared to RBD only and controls. These data contribute evidence that participants with RBD and comorbid NT demonstrate significantly worse autonomic dysfunction compared to age/sex matched participants with RBD alone.
RESUMEN
Introduction: The research criteria for prodromal Parkinson disease (pPD) depends on prospectively validated clinical inputs with large effect sizes and/or high prevalence. Neither traumatic brain injury (TBI), post-traumatic stress disorder (PTSD), nor chronic pain are currently included in the calculator, despite recent evidence of association with pPD. These conditions are widely prevalent, co-occurring, and already known to confer risk of REM behavior disorder (RBD) and PD. Few studies have examined PD risk in the context of TBI and PTSD; none have examined chronic pain. This study aimed to measure the risk of pPD caused by TBI, PTSD, and chronic pain. Methods: 216 US Veterans were enrolled who had self-reported recurrent or persistent pain for at least three months. Of these, 44 met criteria for PTSD, 39 for TBI, and 41 for all three conditions. Several pain, sleep, affective, and trauma questionnaires were administered. Participants' history of RBD was determined via self-report, with a subset undergoing confirmatory video polysomnography. Results: A greater proportion of Veterans with chronic pain met criteria for RBD (36 % vs. 10 %) and pPD (18.0 % vs. 8.3 %) compared to controls. Proportions were increased in RBD (70 %) and pPD (27 %) when chronic pain co-occurred with TBI and PTSD. Partial effects were seen with just TBI or PTSD alone. When analyzed as continuous variables, polytrauma symptom severity correlated with pPD probability (r = 0.28, P = 0.03). Conclusion: These data demonstrate the potential utility of chronic pain, TBI, and PTSD in the prediction of pPD, and the importance of trauma-related factors in the pathogenesis of PD.
RESUMEN
The appearance of misfolded and aggregated proteins is a pathological hallmark of numerous neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Sleep disruption is proposed to contribute to these pathological processes and is a common early feature among neurodegenerative disorders. Synucleinopathies are a subclass of neurodegenerative conditions defined by the presence of α-synuclein aggregates, which may not only enhance cell death, but also contribute to disease progression by seeding the formation of additional aggregates in neighboring cells. The mechanisms driving intercellular transmission of aggregates remains unclear. We propose that disruption of sleep-active glymphatic function, caused by loss of precise perivascular AQP4 localization, inhibits α-synuclein clearance and facilitates α-synuclein propagation and seeding. We examined human post-mortem frontal cortex and found that neocortical α-synuclein pathology was associated with AQP4 mis-localization throughout the gray matter. Using a transgenic mouse model lacking the adapter protein α-syntrophin, we observed that loss of perivascular AQP4 localization impairs the glymphatic clearance of α-synuclein from intersititial to cerebrospinal fluid. Using a mouse model of α-synuclein propogation, using pre-formed fibril injection, we observed that loss of perivascular AQP4 localization increased α-synuclein aggregates. Our results indicate α-synuclein clearance and propagation are mediated by glymphatic function and that AQP4 mis-localization observed in the presence of human synucleinopathy may contribute to the development and propagation of Lewy body pathology in conditions such as Lewy Body Dementia and Parkinson's disease.
RESUMEN
Concussion is a common injury in the adolescent and young adult populations. Although branched chain amino acid (BCAA) supplementation has shown improvements in neurocognitive and sleep function in pre-clinical animal models of mild-to-moderate traumatic brain injury (TBI), to date, no studies have been performed evaluating the efficacy of BCAAs in concussed adolescents and young adults. The goal of this pilot trial was to determine the efficacy, tolerability, and safety of varied doses of oral BCAA supplementation in a group of concussed adolescents and young adults. The study was conducted as a pilot, double-blind, randomized controlled trial of participants ages 11-34 presenting with concussion to outpatient clinics (sports medicine and primary care), urgent care, and emergency departments of a tertiary care pediatric children's hospital and an urban tertiary care adult hospital, between June 24, 2014 and December 5, 2020. Participants were randomized to one of five study arms (placebo and 15 g, 30 g, 45 g, and 54 g BCAA treatment daily) and followed for 21 days after enrollment. Outcome measures included daily computerized neurocognitive tests (processing speed, the a priori primary outcome; and attention, visual learning, and working memory), symptom score, physical and cognitive activity, sleep/wake alterations, treatment compliance, and adverse events. In total, 42 participants were randomized, 38 of whom provided analyzable data. We found no difference in our primary outcome of processing speed between the arms; however, there was a significant reduction in total symptom score (decrease of 4.4 points on a 0-54 scale for every 500 g of study drug consumed, p value for trend = 0.0036, [uncorrected]) and return to physical activity (increase of 0.503 points on a 0-5 scale for every 500 g of study drug consumed, p value for trend = 0.005 [uncorrected]). There were no serious adverse events. Eight of 38 participants reported a mild (not interfering with daily activity) or moderate (limitation of daily activity) adverse event; there were no differences in adverse events by arm, with only two reported mild adverse events (both gastrointestinal) in the highest (45 g and 54 g) BCAA arms. Although limited by slow enrollment, small sample size, and missing data, this study provides the first demonstration of efficacy, as well as safety and tolerability, of BCAAs in concussed adolescents and young adults; specifically, a dose-response effect in reducing concussion symptoms and a return to baseline physical activity in those treated with higher total doses of BCAAs. These findings provide important preliminary data to inform a larger trial of BCAA therapy to expedite concussion recovery.