Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
2.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063069

RESUMEN

The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.


Asunto(s)
Caenorhabditis elegans/fisiología , Distrofia Muscular de Duchenne/patología , Animales , Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Epistasis Genética , Humanos , Distrofia Muscular de Duchenne/genética , Mutación/genética , Fenotipo
3.
FASEB J ; 33(8): 9540-9550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162948

RESUMEN

Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Antimicina A/farmacología , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Furina/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal , Distrofia Muscular de Duchenne
4.
Commun Biol ; 5(1): 1255, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385509

RESUMEN

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Caenorhabditis elegans/genética , Azufre , Cisteína , Suplementos Dietéticos
5.
iScience ; 25(2): 103762, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141505

RESUMEN

Progressive neuromuscular decline in microgravity is a prominent health concern preventing interplanetary human habitation. We establish functional dopamine-mediated impairments as a consistent feature across multiple spaceflight exposures and during simulated microgravity in C. elegans. Animals grown continuously in these conditions display reduced movement and body length. Loss of mechanical contact stimuli in microgravity elicits decreased endogenous dopamine and comt-4 (catechol-O-methyl transferase) expression levels. The application of exogenous dopamine reverses the movement and body length defects caused by simulated microgravity. In addition, increased physical contact made comt-4 and dopamine levels rise. It also increased muscular cytoplasmic Ca2+ firing. In dop-3 (D2-like receptor) mutants, neither decrease in movement nor in body length were observed during simulated microgravity growth. These results strongly suggest that targeting the dopamine system through manipulation of the external environment (contact stimuli) prevents muscular changes and is a realistic and viable treatment strategy to promote safe human deep-space travel.

6.
Astrobiology ; 20(8): 935-943, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267726

RESUMEN

Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism Caenorhabditis elegans has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting C. elegans experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.


Asunto(s)
Adaptación Fisiológica , Caenorhabditis elegans/fisiología , Exobiología/instrumentación , Vuelo Espacial , Ingravidez/efectos adversos , Animales , Descondicionamiento Cardiovascular , Diseño de Equipo , Exobiología/métodos , Modelos Animales , Músculos/fisiología , Simulación de Ingravidez/instrumentación , Simulación de Ingravidez/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA