Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657604

RESUMEN

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Asunto(s)
Muerte Celular , Humanos , Apoptosis , Caspasas/metabolismo , Células HEK293 , Proteolisis , Piroptosis/efectos de los fármacos , Biología Sintética/métodos , Células Cultivadas
2.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37437570

RESUMEN

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Asunto(s)
Técnicas Citológicas , Técnicas Genéticas , ARN , Animales , Transporte Biológico , Mamíferos/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus/genética , Tipificación Molecular , Análisis de Secuencia de ARN
3.
Cell ; 185(6): 967-979.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35235768

RESUMEN

In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.


Asunto(s)
Comunicación Celular , Transducción de Señal , Animales , Recuento de Células , Ingeniería Celular , Ácidos Indolacéticos , Mamíferos , Percepción de Quorum , Biología Sintética/métodos
4.
Cell ; 184(9): 2284-2301, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33848464

RESUMEN

A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.


Asunto(s)
Fenómenos Fisiológicos Celulares , Reprogramación Celular , Ingeniería Genética/métodos , Proteínas/metabolismo , Biología Sintética/métodos , Animales , Humanos , Proteínas/química , Proteínas/genética
5.
Cell ; 172(4): 869-880.e19, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398116

RESUMEN

The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células CHO , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Embrión de Pollo , Cricetulus , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Proteínas de la Membrana/genética , Ratones , Receptor Notch1/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Regulación hacia Arriba
6.
Cell ; 170(6): 1184-1196.e24, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886385

RESUMEN

The bone morphogenetic protein (BMP) signaling pathway comprises multiple ligands and receptors that interact promiscuously with one another and typically appear in combinations. This feature is often explained in terms of redundancy and regulatory flexibility, but it has remained unclear what signal-processing capabilities it provides. Here, we show that the BMP pathway processes multi-ligand inputs using a specific repertoire of computations, including ratiometric sensing, balance detection, and imbalance detection. These computations operate on the relative levels of different ligands and can arise directly from competitive receptor-ligand interactions. Furthermore, cells can select different computations to perform on the same ligand combination through expression of alternative sets of receptor variants. These results provide a direct signal-processing role for promiscuous receptor-ligand interactions and establish operational principles for quantitatively controlling cells with BMP ligands. Similar principles could apply to other promiscuous signaling pathways.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal , Animales , Línea Celular , Células Madre Embrionarias/metabolismo , Retroalimentación , Citometría de Flujo , Ligandos , Ratones , Modelos Biológicos , Células 3T3 NIH
7.
Nat Immunol ; 17(8): 956-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376470

RESUMEN

During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Linfopoyesis/genética , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Rastreo Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA3/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Represoras/genética , Transducción de Señal , Análisis de la Célula Individual , Proteínas Supresoras de Tumor/genética
8.
Nature ; 610(7930): 143-153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007540

RESUMEN

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Modelos Biológicos , Neurulación , Organogénesis , Animales , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Corazón/embriología , Mesencéfalo/embriología , Ratones , Tubo Neural/embriología , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Prosencéfalo/embriología , Somitos/embriología
9.
Nat Rev Mol Cell Biol ; 15(4): 289-94, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24622617

RESUMEN

Synthetic biology, despite still being in its infancy, is increasingly providing valuable information for applications in the clinic, the biotechnology industry and in basic molecular research. Both its unique potential and the challenges it presents have brought together the expertise of an eclectic group of scientists, from cell biologists to engineers. In this Viewpoint article, five experts discuss their views on the future of synthetic biology, on its main achievements in basic and applied science, and on the bioethical issues that are associated with the design of new biological systems.


Asunto(s)
Biotecnología , Ingeniería Genética , Biología Sintética/normas , Biología de Sistemas , Guías como Asunto , Humanos , Biología Sintética/ética , Biología Sintética/legislación & jurisprudencia
10.
Cell ; 139(3): 512-22, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19853288

RESUMEN

Gene regulatory circuits with different architectures (patterns of regulatory interactions) can generate similar dynamics. This raises the question of why a particular circuit architecture is selected to implement a given cellular process. To investigate this problem, we compared the Bacillus subtilis circuit that regulates differentiation into the competence state to an engineered circuit with an alternative architecture (SynEx) in silico and in vivo. Time-lapse microscopy measurements showed that SynEx cells generated competence dynamics similar to native cells and reconstituted the physiology of differentiation. However, architectural differences between the circuits altered the dynamic distribution of stochastic fluctuations (noise) during circuit operation. This distinction in noise causes functional differences between the circuits by selectively controlling the timing of competence episodes and response of the system to various DNA concentrations. These results reveal a tradeoff between temporal precision and physiological response range that is controlled by distinct noise characteristics of alternative circuit architectures.


Asunto(s)
Bacillus subtilis/fisiología , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Modelos Biológicos , Bacillus subtilis/genética , ADN/metabolismo , Retroalimentación , Transformación Bacteriana
11.
Mol Cell ; 61(6): 791-2, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990983

RESUMEN

In this issue of Molecular Cell, Tay and colleagues (Albayrak et al., 2016) describe a new technique to digitally quantify the numbers of protein and mRNA in the same mammalian cell, providing a new way to look at the central dogma of molecular biology.


Asunto(s)
Basigina/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/aislamiento & purificación , Análisis de la Célula Individual/métodos , Animales , Humanos
12.
Nature ; 541(7635): 107-111, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27869821

RESUMEN

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here we describe a synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out of single cells in situ. This system, termed memory by engineered mutagenesis with optical in situ readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by CRISPR/Cas9-based targeted mutagenesis, and later read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). Using MEMOIR as a proof of principle, we engineered mouse embryonic stem cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as the cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of lineage information from cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which embryonic stem cells switch between two gene expression states. Finally, using simulations, we show how parallel MEMOIR systems operating in the same cell could enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single-cell readout across diverse biological systems.


Asunto(s)
Linaje de la Célula , Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , Células Madre Embrionarias de Ratones/citología , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Animales , Sistemas CRISPR-Cas/genética , Proliferación Celular , Simulación por Computador , Ratones , Mutagénesis , ARN/análisis
13.
Development ; 146(12)2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249008

RESUMEN

A handful of core intercellular signaling pathways play pivotal roles in a broad variety of developmental processes. It has remained puzzling how so few pathways can provide the precision and specificity of cell-cell communication required for multicellular development. Solving this requires us to quantitatively understand how developmentally relevant signaling information is actively sensed, transformed and spatially distributed by signaling pathways. Recently, single cell analysis and cell-based reconstitution, among other approaches, have begun to reveal the 'communication codes' through which information is represented in the identities, concentrations, combinations and dynamics of extracellular ligands. They have also revealed how signaling pathways decipher these features and control the spatial distribution of signaling in multicellular contexts. Here, we review recent work reporting the discovery and analysis of communication codes and discuss their implications for diverse developmental processes.


Asunto(s)
Comunicación Celular , Biología Evolutiva/tendencias , Transducción de Señal , Análisis de la Célula Individual/métodos , Animales , Biología Evolutiva/métodos , Diseño de Fármacos , Humanos , Ligandos , Ratones , Modelos Biológicos , Ingeniería de Proteínas , Medicina Regenerativa/tendencias , Procesos Estocásticos
14.
Mol Cell ; 55(2): 319-31, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25038413

RESUMEN

Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Transcriptoma , Animales , Células Cultivadas , Epigénesis Genética , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
15.
Nature ; 527(7576): 54-8, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26466562

RESUMEN

Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might exploit the dynamic interaction of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 showed pulsed activation in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signalling and regulatory systems of the cell.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Glucosa/deficiencia , Glucosa/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Factores de Tiempo , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo
16.
Mol Cell ; 42(4): 405-6, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21596304

RESUMEN

An elegant new study by Bollenbach and Kishony (2011) in this issue of Molecular Cell shows how bacteria resolve the apparent conflicts created when they face two signals with opposite effects on gene expression.

17.
Nature ; 538(7626): 462-463, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27732579
18.
Proc Natl Acad Sci U S A ; 111(17): E1740-8, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733888

RESUMEN

AU-rich element mRNA-binding proteins (AUBPs) are key regulators of development, but how they are controlled and what functional roles they play depends on cellular context. Here, we show that Brf1 (zfp36l1), an AUBP from the Zfp36 protein family, operates downstream of FGF/Erk MAP kinase signaling to regulate pluripotency and cell fate decision making in mouse embryonic stem cells (mESCs). FGF/Erk MAP kinase signaling up-regulates Brf1, which disrupts the expression of core pluripotency-associated genes and attenuates mESC self-renewal without inducing differentiation. These regulatory effects are mediated by rapid and direct destabilization of Brf1 targets, such as Nanog mRNA. Enhancing Brf1 expression does not compromise mESC pluripotency but does preferentially regulate mesendoderm commitment during differentiation, accelerating the expression of primitive streak markers. Together, these studies demonstrate that FGF signals use targeted mRNA degradation by Brf1 to enable rapid posttranscriptional control of gene expression in mESCs.


Asunto(s)
Diferenciación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Elementos Ricos en Adenilato y Uridilato/genética , Animales , Factor 1 de Respuesta al Butirato , Proliferación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Endodermo/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Semivida , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas , Mesodermo/citología , Ratones , Proteína Homeótica Nanog , Células Madre Pluripotentes/metabolismo , Unión Proteica/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo
19.
Nature ; 467(7312): 167-73, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20829787

RESUMEN

The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or 'noise', in the levels of their components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of gene expression across large regulons, as well as probabilistic differentiation strategies that function across cell populations. At the longest timescales, noise may facilitate evolutionary transitions. Here we review examples and emerging principles that connect noise, the architecture of the gene circuits in which it is present, and the biological functions it enables. We further indicate some of the important challenges and opportunities going forward.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Animales , Fenómenos Fisiológicos Celulares , Humanos , Modelos Genéticos
20.
Nature ; 465(7294): 86-90, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20418862

RESUMEN

The Notch-Delta signalling pathway allows communication between neighbouring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch-Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis-trans input-output relationship in the Notch-Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch-Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Receptor Notch1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA