Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 22(2): e3002524, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354369

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3002355.].

2.
PLoS Biol ; 21(11): e3002355, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943958

RESUMEN

The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.


Asunto(s)
Codón sin Sentido , Neoplasias , Humanos , Codón sin Sentido/genética , Biosíntesis de Proteínas/genética , Antibacterianos/farmacología
3.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220654

RESUMEN

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 3 de Iniciación Eucariótica/metabolismo , Fibroblastos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Transcripción Genética , eIF-2 Quinasa/metabolismo , Animales , Reprogramación Celular , Factor 3 de Iniciación Eucariótica/genética , Fibroblastos/patología , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Fenotipo , Proteostasis , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Factores de Tiempo , Transfección , eIF-2 Quinasa/genética
4.
Nucleic Acids Res ; 51(7): 3375-3390, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36881761

RESUMEN

Regulation of mRNA translation in astrocytes gains a growing interest. However, until now, successful ribosome profiling of primary astrocytes has not been reported. Here, we optimized the standard 'polysome profiling' method and generated an effective protocol for polyribosome extraction, which enabled genome-wide assessment of mRNA translation dynamics along the process of astrocyte activation. Transcriptome (RNAseq) and translatome (Riboseq) data generated at 0, 24 and 48 h after cytokines treatment, revealed dynamic genome-wide changes in the expression level of ∼12 000 genes. The data clarify whether a change in protein synthesis rate results from a change in mRNA level or translation efficiency per se. It exhibit different expression strategies, based on changes in mRNA abundance and/or translation efficiency, which are specifically assigned to gene subsets depending on their function. Moreover, the study raises an important take-home message related to the possible presence of 'difficult to extract' polyribosome sub-groups, in all cell types, thus illuminating the impact of ribosomes extraction methodology on experiments addressing translation regulation.


Asunto(s)
Astrocitos , Biosíntesis de Proteínas , Astrocitos/metabolismo , Polirribosomas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica/métodos
5.
PLoS Biol ; 17(11): e3000481, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31714939

RESUMEN

Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.


Asunto(s)
ARN/química , Análisis de Secuencia de ARN/normas , Animales , Sesgo , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Humanos , Ratones , Transcriptoma
6.
Genes Dev ; 27(16): 1834-44, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23934657

RESUMEN

Monitoring protein synthesis is essential to our understanding of gene expression regulation, as protein abundance is thought to be predominantly controlled at the level of translation. Mass-spectrometric and RNA sequencing methods have been recently developed for investigating mRNA translation at a global level, but these still involve technical limitations and are not widely applicable. In this study, we describe a novel system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification and liquid chromatography-tandem mass spectrometry analysis. Using PUNCH-P, we measured cell cycle-specific fluctuations in synthesis for >5000 proteins in mammalian cells, identified proteins not previously implicated in cell cycle processes, and generated the first translational profile of a whole mouse brain. This simple and economical technique is broadly applicable to any cell type and tissue, enabling the identification and quantification of rapid proteome responses under various biological conditions.


Asunto(s)
Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Proteómica/métodos , ARN Mensajero/metabolismo , Animales , Encéfalo/metabolismo , Células HeLa , Humanos , Espectrometría de Masas , Ratones , Proteínas/química , Proteómica/normas , Reproducibilidad de los Resultados , Ribosomas/metabolismo
7.
Nucleic Acids Res ; 45(10): 5945-5957, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28460002

RESUMEN

Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase.


Asunto(s)
Mitosis/genética , Polirribosomas/fisiología , Biosíntesis de Proteínas/fisiología , Proteómica/métodos , Factores de Empalme de ARN/fisiología , Cromatografía Liquida , Fase G1 , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/antagonistas & inhibidores , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/fisiología , Humanos , Interfase , Interferencia de ARN , Factores de Empalme de ARN/aislamiento & purificación , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/genética , Espectrometría de Masas en Tándem
8.
PLoS Genet ; 11(10): e1005554, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26439921

RESUMEN

Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression.


Asunto(s)
Biosíntesis de Proteínas , Proteolisis , ARN Mensajero/biosíntesis , Transcripción Genética , División Celular/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Biosíntesis de Proteínas/genética , Proteoma/genética , ARN Mensajero/genética , Transcriptoma/genética
9.
J Neurochem ; 141(5): 694-707, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28306143

RESUMEN

Eukaryotic translation initiation factor 2B (eIF2B) is a master regulator of protein synthesis under normal and stress conditions. Mutations in any of the five genes encoding its subunits lead to vanishing white matter (VWM) disease, a recessive genetic deadly illness caused by progressive loss of white matter in the brain. In this study we used fibroblasts, which are not involved in the disease, to demonstrate the involvement of eIF2B in mitochondrial function and abundance. Mass spectrometry of total proteome of mouse embryonic fibroblasts (MEFs) isolated from Eif2b5R132H/R132H mice revealed unbalanced stoichiometry of proteins involved in oxidative phosphorylation and of mitochondrial translation machinery components, among others. Mutant MEFs exhibit 55% decrease in oxygen consumption rate per mtDNA content and 47% increase in mitochondrial abundance (p < 0.005), reflecting adaptation to energy requirements. A more robust eIF2B-associated oxidative respiration deficiency was found in mutant primary astrocytes, which exhibit > 3-fold lower ATP-linked respiration per cell despite a 2-fold increase in mtDNA content (p < 0.03). The 2-fold increase in basal and stimulated glycolysis in mutant astrocytes (p ≤ 0.03), but not in MEFs, demonstrates their higher energetic needs and further explicates their involvement in the disease. The data demonstrate the critical role of eIF2B in tight coordination of expression from nuclear and mitochondrial genomes and illuminates the importance of mitochondrial function in VWM pathology. Further dissection of the signaling network associated with eIF2B function will help generating therapeutic strategies for VWM disease and possibly other neurodegenerative disorders.


Asunto(s)
Astrocitos/ultraestructura , Factor 2B Eucariótico de Iniciación/genética , Mitocondrias/genética , Mutación/genética , Fosforilación Oxidativa , Consumo de Oxígeno/genética , Animales , Animales Recién Nacidos , Antimicina A/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Tamaño de la Célula , Células Cultivadas , Cloranfenicol/farmacología , Factor 2B Eucariótico de Iniciación/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/ultraestructura , Antígenos de Histocompatibilidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/fisiología , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/genética , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Ionóforos de Protónes/farmacología , Especies Reactivas de Oxígeno/metabolismo
10.
Mol Cell ; 30(4): 447-59, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18450493

RESUMEN

DAP5 is an eIF4G protein previously implicated in mediating cap-independent translation in response to cellular stresses. Here we report that DAP5 is crucial for continuous cell survival in nonstressed cells. The knockdown of endogenous DAP5 induced M phase-specific caspase-dependent apoptosis. Bcl-2 and CDK1 were identified by two independent screens as DAP5 translation targets. Notably, the activity of the Bcl-2 IRES was reduced in DAP5 knockdown cells and a selective shift of Bcl-2 mRNA toward light polysomal fractions was detected. Furthermore, a functional IRES was identified in the 5'UTR of CDK1. At the cellular level, attenuated translation of CDK1 by DAP5 knockdown decreased the phosphorylation of its M phase substrates. Ectopic expression of Bcl-2 or CDK1 proteins partially reduced the extent of caspase activation caused by DAP5 knockdown. Thus, DAP5 is necessary for maintaining cell survival during mitosis by promoting cap-independent translation of at least two prosurvival proteins.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Mitosis/fisiología , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regiones no Traducidas 5' , Animales , Apoptosis/fisiología , Proteína Quinasa CDC2/genética , Línea Celular , Supervivencia Celular , Factor 4G Eucariótico de Iniciación/genética , Humanos , Ratones , Factores de Iniciación de Péptidos , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN
11.
J Neurochem ; 134(3): 513-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25920008

RESUMEN

Vanishing white matter (VWM) is a recessive neurodegenerative disease caused by mutations in translation initiation factor eIF2B and leading to progressive brain myelin deterioration, secondary axonal damage, and death in early adolescence. Eif2b5(R132H/R132H) mice exhibit delayed developmental myelination, mild early neurodegeneration and a robust remyelination defect in response to cuprizone-induced demyelination. In the current study we used Eif2b5(R132H/R132H) mice for mass-spectrometry analyses, to follow the changes in brain protein abundance in normal- versus cuprizone-diet fed mice during the remyelination recovery phase. Analysis of proteome profiles suggested that dysregulation of mitochondrial functions, altered proteasomal activity and impaired balance between protein synthesis and degradation play a role in VWM pathology. Consistent with these findings, we detected elevated levels of reactive oxygen species in mutant-derived primary fibroblasts and reduced 20S proteasome activity in mutant brain homogenates. These observations highlight the importance of tight translational control to precise coordination of processes involved in myelin formation and regeneration and point at cellular functions that may contribute to VWM pathology. Eif2b5(R132H/R132H) mouse model for vanishing white matter (VWM) disease was used for mass spectrometry of brain proteins at two time points under normal conditions and along recovery from cuprizone-induced demyelination. Comparisons of proteome profiles revealed the importance of mitochondrial function and tight coordination between protein synthesis and degradation to myelination formation and regeneration, pointing at cellular functions that contribute to VWM pathology.


Asunto(s)
Leucoencefalopatías/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
12.
Nucleic Acids Res ; 41(18): e177, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23965304

RESUMEN

The current report represents a further advancement of our previously reported technology termed Fluorescent transfer RNA (tRNA) for Translation Monitoring (FtTM), for monitoring of active global protein synthesis sites in single live cells. FtTM measures Förster resonance energy transfer (FRET) signals, generated when fluorescent tRNAs (fl-tRNAs), separately labeled as a FRET pair, occupy adjacent sites on the ribosome. The current technology, termed DiCodon Monitoring of Protein Synthesis (DiCoMPS), was developed for monitoring active synthesis of a specific protein. In DiCoMPS, specific fl-tRNA pair combinations are selected for transfection, based on the degree of enrichment of a dicodon sequence to which they bind in the mRNA of interest, relative to the background transcriptome of the cell in which the assay is performed. In this study, we used cells infected with the Epizootic Hemorrhagic Disease Virus 2-Ibaraki and measured, through DiCoMPS, the synthesis of the viral non-structural protein 3 (NS3), which is enriched in the AUA:AUA dicodon. fl-tRNA(Ile)UAU-generated FRET signals were specifically enhanced in infected cells, increased in the course of infection and were diminished on siRNA-mediated knockdown of NS3. Our results establish an experimental approach for the single-cell measurement of the levels of synthesis of a specific viral protein.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Biosíntesis de Proteínas , Proteínas Virales/biosíntesis , Animales , Células CHO , Células Cultivadas , Codón , Cricetinae , Cricetulus , Virus de la Enfermedad Hemorrágica Epizoótica , Interferencia de ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Análisis de la Célula Individual , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/genética
13.
Nucleic Acids Res ; 39(9): 3710-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21247879

RESUMEN

MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal signaling, survival and synaptic plasticity. Astrocytes play a key role in repair of brain insults, as part of local immune reactivity triggered by inflammatory or pathological conditions. Thus, astrocyte activation, or astrogliosis, is an important outcome of the innate immune response, which can be elicited by endotoxins such as lipopolysaccharide (LPS) and cytokines such as interferon-gamma (IFN-γ). The involvement of miRNAs in inflammation and stress led us to hypothesize that astrogliosis is mediated by miRNA function. In this study, we compared the miRNA regulatory layer expressed in primary cultured astrocyte derived from rodents (mice) and primates (marmosets) brains upon exposure to LPS and IFN-γ. We identified subsets of differentially expressed miRNAs some of which are shared with other immunological related systems while others, surprisingly, are mouse and rat specific. Of interest, these specific miRNAs regulate genes involved in the tumor necrosis factor-alpha (TNF-α) signaling pathway, indicating a miRNA-based species-specific regulation. Our data suggests that miRNA function is more significant in the mechanisms governing astrocyte activation in rodents compared to primates.


Asunto(s)
Astrocitos/metabolismo , MicroARNs/metabolismo , Animales , Secuencia de Bases , Callithrix , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , MicroARNs/química , MicroARNs/fisiología , Datos de Secuencia Molecular , Ratas , Transducción de Señal , Especificidad de la Especie , Transcripción Genética , Factor de Necrosis Tumoral alfa/fisiología
14.
Nucleic Acids Res ; 39(19): e129, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795382

RESUMEN

We have developed a novel technique of using fluorescent tRNA for translation monitoring (FtTM). FtTM enables the identification and monitoring of active protein synthesis sites within live cells at submicron resolution through quantitative microscopy of transfected bulk uncharged tRNA, fluorescently labeled in the D-loop (fl-tRNA). The localization of fl-tRNA to active translation sites was confirmed through its co-localization with cellular factors and its dynamic alterations upon inhibition of protein synthesis. Moreover, fluorescence resonance energy transfer (FRET) signals, generated when fl-tRNAs, separately labeled as a FRET pair occupy adjacent sites on the ribosome, quantitatively reflect levels of protein synthesis in defined cellular regions. In addition, FRET signals enable detection of intra-populational variability in protein synthesis activity. We demonstrate that FtTM allows quantitative comparison of protein synthesis between different cell types, monitoring effects of antibiotics and stress agents, and characterization of changes in spatial compartmentalization of protein synthesis upon viral infection.


Asunto(s)
Colorantes Fluorescentes , Microscopía Fluorescente , Biosíntesis de Proteínas , ARN de Transferencia , Análisis de la Célula Individual , Animales , Astrocitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/análisis , Ratones , Ratones Endogámicos C57BL , ARN de Transferencia/análisis , Proteínas Virales/biosíntesis
15.
Commun Biol ; 6(1): 1269, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097729

RESUMEN

Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.


Asunto(s)
Factores de Transcripción TFIII , Síndrome de Williams , Humanos , Autofagia/genética , Heterocigoto , Neuronas/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Síndrome de Williams/genética , Síndrome de Williams/metabolismo
16.
J Biol Chem ; 286(32): 27927-35, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21665947

RESUMEN

Translation elongation in eukaryotes is mediated by the concerted actions of elongation factor 1A (eEF1A), which delivers aminoacylated tRNA to the ribosome; elongation factor 1B (eEF1B) complex, which catalyzes the exchange of GDP to GTP on eEF1A; and eEF2, which facilitates ribosomal translocation. Here we present evidence in support of a novel mode of translation regulation by hindered tRNA delivery during mitosis. A conserved consensus phosphorylation site for the mitotic cyclin-dependent kinase 1 on the catalytic delta subunit of eEF1B (termed eEF1D) is required for its posttranslational modification during mitosis, resulting in lower affinity to its substrate eEF1A. This modification is correlated with reduced availability of eEF1A·tRNA complexes, as well as reduced delivery of tRNA to and association of eEF1A with elongating ribosomes. This mode of regulation by hindered tRNA delivery, although first discovered in mitosis, may represent a more globally applicable mechanism employed under other physiological conditions that involve down-regulation of protein synthesis at the elongation level.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis/fisiología , Extensión de la Cadena Peptídica de Translación/fisiología , Factor 1 de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Proteína Quinasa CDC2/genética , Células HeLa , Humanos , Factor 1 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación/fisiología , ARN de Transferencia/genética , Ribosomas/genética
17.
Brain ; 133(Pt 8): 2448-61, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20826436

RESUMEN

Eukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit. In contrast to human patients, mice homozygous for the mutant Eif2b5 allele (Eif2b5(R132H/R132H) mice) enable multiple analyses under a defined genetic background during the pre-symptomatic stages and during recovery from a defined brain insult. Time-course magnetic resonance imaging revealed for the first time the delayed development of the brain white matter due to the mutation. Electron microscopy demonstrated a higher proportion of small-calibre nerve fibres. Immunohistochemistry detected an abnormal abundance of oligodendrocytes and astrocytes in the brain of younger animals, as well as an abnormal level of major myelin proteins. Most importantly, mutant mice failed to recover from cuprizone-induced demyelination, reflecting an increased sensitivity to brain insults. The anomalous development of white matter in Eif2b5(R132H/R132H) mice underscores the importance of tight translational control to normal myelin formation and maintenance.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Factor 2B Eucariótico de Iniciación/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Axones/metabolismo , Axones/patología , Encéfalo/crecimiento & desarrollo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de la Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Mutación Puntual
18.
Cells ; 10(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440627

RESUMEN

Translation initiation factor 2B (eIF2B) is a master regulator of global protein synthesis in all cell types. The mild genetic Eif2b5(R132H) mutation causes a slight reduction in eIF2B enzymatic activity which leads to abnormal composition of mitochondrial electron transfer chain complexes and impaired oxidative phosphorylation. Previous work using primary fibroblasts isolated from Eif2b5(R132H/R132H) mice revealed that owing to increased mitochondrial biogenesis they exhibit normal cellular ATP level. In contrast to fibroblasts, here we show that primary astrocytes isolated from Eif2b5(R132H/R132H) mice are unable to compensate for their metabolic impairment and exhibit chronic state of low ATP level regardless of extensive adaptation efforts. Mutant astrocytes are hypersensitive to oxidative stress and to further energy stress. Moreover, they show migration deficit upon exposure to glucose starvation. The mutation in Eif2b5 prompts reactive oxygen species (ROS)-mediated inferior ability to stimulate the AMP-activated protein kinase (AMPK) axis, due to a requirement to increase the mammalian target of rapamycin complex-1 (mTORC1) signalling in order to enable oxidative glycolysis and generation of specific subclass of ROS-regulating proteins, similar to cancer cells. The data disclose the robust impact of eIF2B on metabolic and redox homeostasis programs in astrocytes and point at their hyper-sensitivity to mutated eIF2B. Thereby, it illuminates the central involvement of astrocytes in Vanishing White Matter Disease (VWMD), a genetic neurodegenerative leukodystrophy caused by homozygous hypomorphic mutations in genes encoding any of the 5 subunits of eIF2B.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Factor 2B Eucariótico de Iniciación/metabolismo , Leucoencefalopatías/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Astrocitos/patología , Encéfalo/patología , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias/genética , Mitocondrias/patología , Mutación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
19.
Cell Death Dis ; 12(12): 1133, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873168

RESUMEN

Neurologic disorders often disproportionately affect specific brain regions, and different apoptotic mechanisms may contribute to white matter pathology in leukodystrophies or gray matter pathology in poliodystrophies. We previously showed that neural progenitors that generate cerebellar gray matter depend on the anti-apoptotic protein BCL-xL. Conditional deletion of Bcl-xL in these progenitors produces spontaneous apoptosis and cerebellar hypoplasia, while similar conditional deletion of Mcl-1 produces no phenotype. Here we show that, in contrast, postnatal oligodendrocytes depend on MCL-1. We found that brain-wide Mcl-1 deletion caused apoptosis specifically in mature oligodendrocytes while sparing astrocytes and oligodendrocyte precursors, resulting in impaired myelination and progressive white matter degeneration. Disabling apoptosis through co-deletion of Bax or Bak rescued white matter degeneration, implicating the intrinsic apoptotic pathway in Mcl-1-dependence. Bax and Bak co-deletions rescued different aspects of the Mcl-1-deleted phenotype, demonstrating their discrete roles in white matter stability. MCL-1 protein abundance was reduced in eif2b5-mutant mouse model of the leukodystrophy vanishing white matter disease (VWMD), suggesting the potential for MCL-1 deficiency to contribute to clinical neurologic disease. Our data show that oligodendrocytes require MCL-1 to suppress apoptosis, implicate MCL-1 deficiency in white matter pathology, and suggest apoptosis inhibition as a leukodystrophy therapy.


Asunto(s)
Enfermedades Desmielinizantes , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Sustancia Blanca , Animales , Apoptosis/genética , Enfermedades Desmielinizantes/patología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sustancia Blanca/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
20.
Mol Cell Biol ; 27(19): 6639-46, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17664278

RESUMEN

Global mRNA translation is transiently inhibited during cellular division. We demonstrate that mitotic cells contain heavy polysomes, but these are significantly less translationally active than polysomes in cycling cells. Several observations indicate that mitotic translational attenuation occurs during the elongation stage: (i) in cycling nonsynchronized cultures, only mitotic cells fail to assemble stress granules when treated with agents that inhibit translational initiation; (ii) mitotic cells contain fewer free 80S complexes, which are less sensitive to high salt disassembly; (iii) mitotic polysomes are more resistant to enforced disassembly using puromycin; and (iv) ribosome transit time increases during mitosis. Elongation slowdown guarantees that polysomes are retained even if initiation is inhibited at the same time. Stalling translating ribosomes during mitosis may protect mRNAs and allow rapid resumption of translation immediately upon entry into the G(1) phase.


Asunto(s)
Mitosis/fisiología , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA