Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(5): e1009506, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956822

RESUMEN

Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.


Asunto(s)
Cerebelo/metabolismo , Metilación de ADN , Epigénesis Genética , Proteínas ADAM , Animales , Autoantígenos , Proteínas Portadoras , Chad , Islas de CpG , Femenino , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macaca mulatta/genética , Masculino , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Pan troglodytes/genética , Fosfoinositido Fosfolipasa C , Proteínas Serina-Treonina Quinasas , Proteínas , Proteínas Asociadas a SAP90-PSD95 , Especificidad de la Especie , Sitio de Iniciación de la Transcripción
2.
Am J Primatol ; 85(4): e23466, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737077

RESUMEN

Accurate and up-to-date data on longevity and mortality are essential for describing, analyzing, and managing animal populations in captivity. We assembled a comprehensive demography data set and analyzed survival and mortality patterns in a population of captive former biomedical research chimpanzees. The study synthesized over 51,000 life-years of demographic data collected on 2349 individuals between 1923 and 2014. Our goal was to assess the population's current age-sex composition, estimate rates of survivorship, mortality and life expectancy, and compare findings with other chimpanzee populations of interest. Results indicated an increasingly geriatric contemporary population declining in size. The median life expectancy (MLE) of the entire population was 32.6 years (males 29.1, females 36.1). For chimpanzees who reached 1 year of age, the MLE increased to 34.9 years (males 31.0, females 38.8). Survival probability was influenced by both sex and birth type. Females exhibited greater survivorship than males (ß1 = -0.34, z = -5.74, p < 0.001) and wild-born individuals exhibited greater survivorship than captive-born individuals (ß2 = -0.55, z = -5.89, p < 0.001). There was also a seasonal trend in mortality, wherein more individuals died during the winter months (December-February) compared with other seasons. Analyses of life expectancy over time showed continual increases in both median age of living individuals and median age at death, suggesting that these chimpanzees have yet to reach their full aging potential in a postresearch environment. As they continue to age, ongoing monitoring and analysis of demographic changes will be necessary for science-based population and program management until extinction occurs some decades in the future.


Asunto(s)
Investigación Biomédica , Hominidae , Masculino , Femenino , Animales , Pan troglodytes , Esperanza de Vida , Longevidad , Envejecimiento , Mortalidad
3.
Proc Natl Acad Sci U S A ; 117(45): 28422-28432, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109720

RESUMEN

The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.


Asunto(s)
Corteza Cerebral/metabolismo , Evolución Molecular , Neuronas/metabolismo , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epigénesis Genética , Epigenómica , Expresión Génica , Código de Histonas , Humanos , Interneuronas/metabolismo , Macaca mulatta/genética , Pan troglodytes/genética , Primates/genética , Elementos Reguladores de la Transcripción , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma
4.
PLoS Biol ; 14(9): e1002558, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27685936

RESUMEN

Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans.

5.
Mol Biol Evol ; 34(5): 1155-1166, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158622

RESUMEN

Lipids are essential components of the brain. Here, we conducted a comprehensive mass spectrometry-based analysis of lipidome composition in the prefrontal cortex of 40 humans, 40 chimpanzees, and 40 rhesus monkeys over postnatal development and adulthood. Of the 11,772 quantified lipid peaks, 7,589 change significantly along the lifespan. More than 60% of these changes occur prior to adulthood, with less than a quarter associated with myelination progression. Evolutionarily, 36% of the age-dependent lipids exhibit concentration profiles distinct to one of the three species; 488 (18%) of them were unique to humans. In both humans and chimpanzees, the greatest extent of species-specific differences occurs in early development. Human-specific lipidome differences, however, persist over most of the lifespan and reach their peak from 20 to 35 years of age, when compared with chimpanzee-specific ones.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Lípidos/fisiología , Factores de Edad , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Humanos , Lípidos/genética , Macaca mulatta/anatomía & histología , Espectrometría de Masas/métodos , Pan troglodytes/anatomía & histología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Especificidad de la Especie
6.
Mol Cell Neurosci ; 82: 137-142, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28461219

RESUMEN

The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells.


Asunto(s)
L-Lactato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Neocórtex/metabolismo , Animales , Cuerpo Estriado/metabolismo , Femenino , Isoenzimas/metabolismo , Lactato Deshidrogenasa 5 , Masculino , Primates , Sinaptosomas/metabolismo
7.
Mol Genet Metab ; 122(3): 130-133, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919002

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder leading to the accumulation of very long chain fatty acids (VLCFA) due to a mutation in the ABCD1 gene. ABCD1 mutations lead to a variety of phenotypes, including cerebral X-ALD and adrenomyeloneuropathy (AMN) in affected males and 80% of carrier females. There is no definite genotype-phenotype correlation with intrafamilial variability. Cerebral X-ALD typically presents in childhood, but can also present in juveniles and adults. The most affected tissues are the white matter of the brain and adrenal cortex. MRI demonstrates a characteristic imaging appearance in cerebral X-ALD that is used as a diagnostic tool. OBJECTIVES: We aim to correlate a mutation in the ABCD1 gene in a chimpanzee to the human disease X-ALD based on MRI features, neurologic symptoms, and plasma levels of VLCFA. METHODS: Diagnosis of X-ALD made using MRI, blood lipid profiling, and DNA sequencing. RESULTS: An 11-year-old chimpanzee showed remarkably similar features to juvenile onset cerebral X-ALD in humans including demyelination of frontal lobes and corpus callosum on MRI, elevated plasma levels of C24:0 and C26:0, and identification of the c.1661G>A ABCD1 variant. CONCLUSIONS: This case study presents the first reported case of a leukodystrophy in a great ape, and underscores the fidelity of MRI pattern recognition in this disorder across species.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Adrenoleucodistrofia/genética , Encéfalo/fisiopatología , Pan troglodytes/genética , Adrenoleucodistrofia/diagnóstico por imagen , Adulto , Edad de Inicio , Animales , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Coenzima A Ligasas/sangre , Enfermedades Desmielinizantes , Femenino , Lóbulo Frontal/patología , Estudios de Asociación Genética , Humanos , Lípidos/sangre , Imagen por Resonancia Magnética , Masculino , Mutación , Fenotipo , Análisis de Secuencia de ADN/métodos
8.
PLoS Biol ; 12(5): e1001871, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24866127

RESUMEN

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.


Asunto(s)
Macaca/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Pan troglodytes/metabolismo , Corteza Prefrontal/metabolismo , Animales , Evolución Biológica , Cognición/fisiología , Metabolismo Energético , Femenino , Humanos , Macaca/psicología , Masculino , Ratones , Fuerza Muscular/fisiología , Pan troglodytes/psicología , Especificidad de la Especie
9.
Cereb Cortex ; 25(6): 1596-607, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24408959

RESUMEN

Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory.


Asunto(s)
Evolución Biológica , Expresión Génica , Neocórtex/metabolismo , Receptores de Glutamato/genética , Sinapsis/genética , Transmisión Sináptica/fisiología , Animales , Bases de Datos Bibliográficas/estadística & datos numéricos , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Filogenia , Primates , Análisis de Componente Principal , Regiones Promotoras Genéticas/genética , ARN Mensajero/metabolismo , Receptores de Glutamato/metabolismo , Transducción de Señal/genética , Estadísticas no Paramétricas , Sinapsis/metabolismo
10.
Brain Behav Evol ; 83(3): 216-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24686273

RESUMEN

With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.


Asunto(s)
Evolución Biológica , Cuerpo Estriado/enzimología , Lactato Deshidrogenasas/metabolismo , Neocórtex/enzimología , Primates/metabolismo , Anciano , Animales , Cuerpo Estriado/anatomía & histología , Femenino , Humanos/anatomía & histología , Humanos/metabolismo , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Masculino , Persona de Mediana Edad , Neocórtex/anatomía & histología , Tamaño de los Órganos , Filogenia , Terminales Presinápticos/enzimología , Primates/anatomía & histología , Prosencéfalo/anatomía & histología , Prosencéfalo/enzimología , Especificidad de la Especie , Sinaptosomas/enzimología
11.
Elife ; 132024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38275218

RESUMEN

Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.


Asunto(s)
Encéfalo , Primates , Humanos , Animales , Filogenia , Primates/genética , Encéfalo/fisiología , Evolución Molecular , Pan troglodytes/genética , Expresión Génica , Evolución Biológica
12.
Am J Primatol ; 75(8): 798-806, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23440922

RESUMEN

Baboons (Papio hamadryas anubis) of a conventional breeding colony were nursery-reared to create a specific pathogen-free (SPF) baboon-breeding program. Because the founding generations were nursery-reared until 2 years of age, it was suspected that the SPF baboons would exhibit increased reproductive challenges as adults. Mothering behavior was of interest, because SPF females were not exposed to parental role models during the nursery-rearing process. We compared reproductive data from the SPF baboon breeding program during its first 10 years with data from age-matched baboons during the same period from an established, genetically-similar conventional breeding colony. We also evaluated records documenting mother-infant behaviors within the SPF colony. The average age of menarche in SPF females was 3.3 years. The overall live birth rate of both SPF and conventional females was approximately 90%, with no difference in pregnancy outcome between the two colonies. The average age at first conception for SPF females was earlier (4.2 years) than that of the conventional females (4.7 years). In both colonies, primiparous females were more likely to abort than multiparous females. Similarly, primiparous females were more likely to lose their infants to death or human intervention. A mothering score system was developed in the SPF colony to facilitate intervention of poor mother-infant relationships. Records revealed 70% of SPF mothers were able to raise one or more of their infants successfully to at least 180 days of age, which did not differ from conventional mothers. SPF females returned to post-partum amenorrhea 27 days sooner on average than the conventional females, independent of dam age. The nursery-rearing process used for recruitment into the SPF colony therefore did not have an adverse effect on reproduction or rearing offspring.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales de Laboratorio/psicología , Papio/fisiología , Reproducción/fisiología , Aborto Veterinario , Animales , Femenino , Embarazo , Conducta Social , Organismos Libres de Patógenos Específicos
13.
Zoo Biol ; 32(1): 79-87, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22968757

RESUMEN

Cardiovascular disease is a primary cause of morbidity and mortality in captive chimpanzees. Four years of blood pressure (BP) data were analyzed from a captive former laboratory population of 201 healthy adult chimpanzees with assessment of age and obesity on elevated BP. Five different measures of obesity were compared: abdominal girth, basal metabolic rate, body-mass index (BMI), body weight, and surface area. Systolic BP varied by sex. Obesity did not influence male BP. For females, obesity was a significant determinant of BP. The best measure of female obesity was basal metabolic rate and the worst was BMI. Median systolic BP of healthy weight females (<54.5 kg) was significantly lower (128 mmHg) than overweight or obese females (140 mmHg), but both were lower than all males (147 mmHg). For diastolic BP, neither sex nor any of the five obesity measures was significant. But age was highly significant, with geriatric chimpanzees (>30 years) having higher median diastolic BP (74 mmHg) than young adults of 10-29 years of age (65 mmHg). By these criteria, 80% of this population is normotensive, 7% prehypertensive, and 13% hypertensive. In summary, systolic BP intervals required adjustment for obesity among females but not males. Diastolic BP required adjustment for advanced age (≥30 years). Use of these reference intervals can facilitate timely clinical care of captive chimpanzees.


Asunto(s)
Envejecimiento/patología , Animales de Zoológico , Enfermedades del Simio Antropoideo/epidemiología , Hipertensión/veterinaria , Obesidad/veterinaria , Pan troglodytes , Análisis de Varianza , Animales , Metabolismo Basal/fisiología , Presión Sanguínea/fisiología , Índice de Masa Corporal , Peso Corporal/fisiología , Femenino , Hipertensión/epidemiología , Hipertensión/etiología , Masculino , Obesidad/complicaciones , Obesidad/epidemiología , Prevalencia , Valores de Referencia , Factores de Riesgo , Factores Sexuales , Especificidad de la Especie
14.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711977

RESUMEN

Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. Here, we performed multi-regional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry, then integrated these data with complementary glycotranscriptomic data. We found that in primates the brain N-glycome has evolved more rapidly than the underlying transcriptomic framework, providing a mechanism for generating additional diversity. We show that brain N-glycome evolution in hominids has been characterized by an increase in complexity and α(2-6)-linked N-acetylneuraminic acid along with human-specific cell-type expression of key glycogenes. Finally, by comparing the prenatal and adult human brain N-glycome, we identify region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain. One-Sentence Summary: Evolution of the human brain N-glycome has been marked by an increase in complexity and a shift in sialic acid linkage.

15.
Sci Adv ; 9(49): eadg2615, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055821

RESUMEN

Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.


Asunto(s)
Encéfalo , Adulto , Humanos , Ratas , Animales , Glicosilación , Espectrometría de Masas
16.
Epigenetics ; 17(12): 1774-1785, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35603816

RESUMEN

Epigenetic age has emerged as an important biomarker of biological ageing. It has revealed that some tissues age faster than others, which is vital to understanding the complex phenomenon of ageing and developing effective interventions. Previous studies have demonstrated that humans exhibit heterogeneity in pace of epigenetic ageing among brain structures that are consistent with differences in structural and microanatomical deterioration. Here, we add comparative data on epigenetic brain ageing for chimpanzees, humans' closest relatives. Such comparisons can further our understanding of which aspects of human ageing are evolutionarily conserved or specific to our species, especially given that humans are distinguished by a long lifespan, large brain, and, potentially, more severe neurodegeneration with age. Specifically, we investigated epigenetic ageing of the dorsolateral prefrontal cortex and cerebellum, of humans and chimpanzees by generating genome-wide CpG methylation data and applying established epigenetic clock algorithms to produce estimates of biological age for these tissues. We found that both species exhibit relatively slow epigenetic ageing in the brain relative to blood. Between brain structures, humans show a faster rate of epigenetic ageing in the dorsolateral prefrontal cortex compared to the cerebellum, which is consistent with previous findings. Chimpanzees, in contrast, show comparable rates of epigenetic ageing in the two brain structures. Greater epigenetic change in the human dorsolateral prefrontal cortex compared to the cerebellum may reflect both the protracted development of this structure in humans and its greater age-related vulnerability to neurodegenerative pathology.


Asunto(s)
Metilación de ADN , Pan troglodytes , Animales , Humanos , Pan troglodytes/genética , Envejecimiento/genética , Envejecimiento/patología , Corteza Prefrontal , Epigénesis Genética , Cerebelo , Biomarcadores
17.
Science ; 377(6614): eabo7257, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36007006

RESUMEN

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.


Asunto(s)
Corteza Prefontal Dorsolateral , Evolución Molecular , Primates , Somatostatina , Tirosina 3-Monooxigenasa , Adulto , Animales , Dopamina/metabolismo , Corteza Prefontal Dorsolateral/citología , Corteza Prefontal Dorsolateral/metabolismo , Humanos , Pan troglodytes , Primates/genética , Análisis de la Célula Individual , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
18.
Lipids Health Dis ; 10: 101, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21679470

RESUMEN

BACKGROUND: Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. RESULTS: In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. CONCLUSION: We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.


Asunto(s)
Eritrocitos/metabolismo , Pan troglodytes/metabolismo , Plasmalógenos/metabolismo , Animales , Vías Biosintéticas , Células Cultivadas , Dieta Vegetariana , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gorilla gorilla , Humanos , Masculino , Pan paniscus , Peroxisomas/metabolismo , Fosfolípidos/metabolismo , Filogenia , Plasmalógenos/biosíntesis , Plasmalógenos/química , Pongo pygmaeus
19.
Rural Remote Health ; 11(3): 1758, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21905760

RESUMEN

INTRODUCTION: Diabetes is a growing worldwide problem, characterized by considerable ethnic variation and being particularly common in modernizing populations. Modernization is accompanied by a variety of stressful sociocultural changes that are believed to increase the risk of diabetes. Unfortunately, there is little accurate knowledge about impact of stress on the risk of diabetes in the US-Mexico border area. METHODS: Literature searches were performed in PubMed and Google Scholar to identify anthropological studies on stress and diabetes. Snowball and opportunistic sampling were used to expand the identified literature. In total, 30 anthropological studies were identified concerning the role of stress and modernization on diabetes among Indigenous peoples. This article reviews the available information regarding stress and diabetes in different populations from various anthropological perspectives. RESULTS: Four different concepts of stress were indentified: physiological, psychological, psychosocial and nutritional stress. Unlike physiological and nutritional theories of diabetes, psychological and psychosocial theories of stress and disease lack etiological specificity. No study addressed all four concepts of stress and few studies addressed more than two concepts. Most studies concerned nutritional stress and the developmental origins of diabetes. Most studies were conducted on the Pima Indians of Arizona and Mexico. All four stress concepts have some evidence as determinants of diabetes. CONCLUSION: These theoretical concepts and ethnographic results can provide the basis for developing comprehensive research protocols and public health intervention targeted at diabetes. A comprehensive view of stress can potentially explain the high prevalence of diabetes in developing countries and among Indigenous peoples. These results can be used to inform public health interventions aimed at reducing diabetes in the US-Mexico border region or similar areas, help identify at-risk individuals, and guide health education and promotion.


Asunto(s)
Diabetes Mellitus/psicología , Estrés Fisiológico , Estrés Psicológico , Arizona/etnología , Diabetes Mellitus/etnología , Humanos , México/etnología , Cambio Social
20.
BMC Physiol ; 10: 19, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932325

RESUMEN

BACKGROUND: It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. RESULTS: Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. CONCLUSION: We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.


Asunto(s)
Eritrocitos/química , Intestinos/fisiología , Ácido Fitánico/metabolismo , Animales , Femenino , Expresión Génica , Gorilla gorilla , Hominidae , Humanos , Masculino , Pan paniscus , Pan troglodytes , Pongo pygmaeus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA