Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 26(Pt 5): 1600-1611, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490150

RESUMEN

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm-50 nm crystalline indium tin oxide or a 100 nm-150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Šspatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure-function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.

2.
Nano Lett ; 18(5): 2816-2821, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29653052

RESUMEN

Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.

3.
Nano Lett ; 16(12): 7786-7790, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960476

RESUMEN

Despite rapid advances in conversion efficiency (>22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 °C) by integrating an ultrathin amorphous oxide electron extraction layer via atomic layer deposition (ALD). These unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

4.
Angew Chem Int Ed Engl ; 56(18): 4991-4995, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28371057

RESUMEN

Wet chemical screening reveals the very high reactivity of Mo(NMe2 )4 with H2 S for the low-temperature synthesis of MoS2 . This observation motivated an investigation of Mo(NMe2 )4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2 )4 enables MoS2 film growth at record low temperatures-as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.

5.
Nano Lett ; 13(12): 5763-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23464881

RESUMEN

Molecular-scale control over the integration of disparate materials on graphene is a critical step in the development of graphene-based electronics and sensors. Here, we report that self-assembled monolayers of 10,12-pentacosadiynoic acid (PCDA) on epitaxial graphene can be used to template the reaction and directed growth of atomic layer deposited (ALD) oxide nanostructures with sub-10 nm lateral resolution. PCDA spontaneously assembles into well-ordered domains consisting of one-dimensional molecular chains that coat the entire graphene surface in a manner consistent with the symmetry of the underlying graphene lattice. Subsequently, zinc oxide and alumina ALD precursors are shown to preferentially react with the functional moieties of PCDA, resulting in templated oxide nanostructures. The retention of the original one-dimensional molecular ordering following ALD is dependent on the chemical reaction pathway and the stability of the monolayer, which can be enhanced via ultraviolet-induced molecular cross-linking.


Asunto(s)
Ácidos Grasos Insaturados/química , Grafito/química , Nanoestructuras/química , Óxido de Zinc/química , Óxido de Aluminio/química , Técnicas Biosensibles , Electrónica
6.
J Am Chem Soc ; 135(24): 8926-39, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23688160

RESUMEN

Ambient and solution-processable, low-leakage, high capacitance gate dielectrics are of great interest for advances in low-cost, flexible, thin-film transistor circuitry. Here we report a new hafnium oxide-organic self-assembled nanodielectric (Hf-SAND) material consisting of regular, alternating π-electron layers of 4-[[4-[bis(2-hydroxyethyl)amino]phenyl]diazenyl]-1-[4-(diethoxyphosphoryl) benzyl]pyridinium bromide) (PAE) and HfO2 nanolayers. These Hf-SAND multilayers are grown from solution in ambient with processing temperatures ≤150 °C and are characterized by AFM, XPS, X-ray reflectivity (2.3 nm repeat spacing), X-ray fluorescence, cross-sectional TEM, and capacitance measurements. The latter yield the largest capacitance to date (1.1 µF/cm(2)) for a solid-state solution-processed hybrid inorganic-organic gate dielectric, with effective oxide thickness values as low as 3.1 nm and have gate leakage <10(-7) A/cm(2) at ±2 MV/cm using photolithographically patterned contacts (0.04 mm(2)). The sizable Hf-SAND capacitances are attributed to relatively large PAE coverages on the HfO2 layers, confirmed by X-ray reflectivity and X-ray fluorescence. Random network semiconductor-enriched single-walled carbon nanotube transistors were used to test Hf-SAND utility in electronics and afforded record on-state transconductances (5.5 mS) at large on:off current ratios (I(ON):I(OFF)) of ~10(5) with steep 150 mV/dec subthreshold swings and intrinsic field-effect mobilities up to 137 cm(2)/(V s). Large-area devices (>0.2 mm(2)) on Hf-SAND (6.5 nm thick) achieve mA on currents at ultralow gate voltages (<1 V) with low gate leakage (<2 nA), highlighting the defect-free and conformal nature of this nanodielectric. High-temperature annealing in ambient (400 °C) has limited impact on Hf-SAND leakage densities (<10(-6) A/cm(2) at ±2 V) and enhances Hf-SAND multilayer capacitance densities to nearly 1 µF/cm(2), demonstrating excellent compatibility with device postprocessing methodologies. These results represent a significant advance in hybrid organic-inorganic dielectric materials and suggest synthetic routes to even higher capacitance materials useful for unconventional electronics.


Asunto(s)
Capacidad Eléctrica , Hafnio/química , Óxidos/química , Compuestos de Piridinio/química , Electrones , Diseño de Equipo , Semiconductores
7.
Phys Rev Lett ; 111(21): 215501, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24313501

RESUMEN

Atomic-layer 2D crystals have unique properties that can be significantly modified through interaction with an underlying support. For epitaxial graphene on SiC(0001), the interface strongly influences the electronic properties of the overlaying graphene. We demonstrate a novel combination of x-ray scattering and spectroscopy for studying the complexities of such a buried interface structure. This approach employs x-ray standing wave-excited photoelectron spectroscopy in conjunction with x-ray reflectivity to produce a highly resolved chemically sensitive atomic profile for the terminal substrate bilayers, interface, and graphene layers along the SiC[0001] direction.

8.
J Am Chem Soc ; 134(28): 11726-33, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22708575

RESUMEN

Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.

9.
J Am Chem Soc ; 133(26): 10239-50, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21609017

RESUMEN

We report here on the rational synthesis, processing, and dielectric properties of novel layer-by-layer organic/inorganic hybrid multilayer dielectric films enabled by polarizable π-electron phosphonic acid building blocks and ultrathin ZrO(2) layers. These new zirconia-based self-assembled nanodielectric (Zr-SAND) films (5-12 nm thick) are readily fabricated via solution processes under ambient atmosphere. Attractive Zr-SAND properties include amenability to accurate control of film thickness, large-area uniformity, well-defined nanostructure, exceptionally large electrical capacitance (up to 750 nF/cm(2)), excellent insulating properties (leakage current densities as low as 10(-7) A/cm(2)), and excellent thermal stability. Thin-film transistors (TFTs) fabricated with pentacene and PDIF-CN(2) as representative organic semiconductors and zinc-tin-oxide (Zn-Sn-O) as a representative inorganic semiconductor function well at low voltages (<±4.0 V). Furthermore, the TFT performance parameters of representative organic semiconductors deposited on Zr-SAND films, functionalized on the surface with various alkylphosphonic acid self-assembled monolayers, are investigated and shown to correlate closely with the alkylphosphonic acid chain dimensions.

10.
BMC Med ; 9: 118, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22044777

RESUMEN

BACKGROUND: Health care disparity is a public health challenge. We compared the prevalence of diabetes, quality of care and outcomes between mental health clients (MHCs) and non-MHCs. METHODS: This was a population-based longitudinal study of 139,208 MHCs and 294,180 matched non-MHCs in Western Australia (WA) from 1990 to 2006, using linked data of mental health registry, electoral roll registrations, hospital admissions, emergency department attendances, deaths, and Medicare and pharmaceutical benefits claims. Diabetes was identified from hospital diagnoses, prescriptions and diabetes-specific primary care claims (17,045 MHCs, 26,626 non-MHCs). Both univariate and multivariate analyses adjusted for socio-demographic factors and case mix were performed to compare the outcome measures among MHCs, category of mental disorders and non-MHCs. RESULTS: The prevalence of diabetes was significantly higher in MHCs than in non-MHCs (crude age-sex-standardised point-prevalence of diabetes on 30 June 2006 in those aged ≥20 years, 9.3% vs 6.1%, respectively, P < 0.001; adjusted odds ratio (OR) 1.40, 95% CI 1.36 to 1.43). Receipt of recommended pathology tests (HbA1c, microalbuminuria, blood lipids) was suboptimal in both groups, but was lower in MHCs (for all tests combined; adjusted OR 0.81, 95% CI 0.78 to 0.85, at one year; and adjusted rate ratio (RR) 0.86, 95% CI 0.84 to 0.88, during the study period). MHCs also had increased risks of hospitalisation for diabetes complications (adjusted RR 1.20, 95% CI 1.17 to 1.24), diabetes-related mortality (1.43, 1.35 to 1.52) and all-cause mortality (1.47, 1.42 to 1.53). The disparities were most marked for alcohol/drug disorders, schizophrenia, affective disorders, other psychoses and personality disorders. CONCLUSIONS: MHCs warrant special attention for primary and secondary prevention of diabetes, especially at the primary care level.


Asunto(s)
Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Trastornos Mentales/complicaciones , Calidad de la Atención de Salud/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Prevalencia , Resultado del Tratamiento , Australia Occidental/epidemiología
11.
BMC Psychiatry ; 11: 163, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21985082

RESUMEN

BACKGROUND: Emerging evidence indicates an association between mental illness and poor quality of physical health care. To test this, we compared mental health clients (MHCs) with non-MHCs on potentially preventable hospitalisations (PPHs) as an indicator of the quality of primary care received. METHODS: Population-based retrospective cohort study of 139,208 MHCs and 294,180 matched non-MHCs in Western Australia from 1990 to 2006, using linked data from electoral roll registrations, mental health registry (MHR) records, hospital inpatient discharges and deaths. We used the electoral roll data as the sampling frame for both cohorts to enhance internal validity of the study, and the MHR to separate MHCs from non-MHCs. Rates of PPHs (overall and by PPH category and medical condition) were compared between MHCs, category of mental disorders and non-MHCs. Multivariate negative binomial regression analyses adjusted for socio-demographic factors, case mix and the year at the start of follow up due to dynamic nature of study cohorts. RESULTS: PPHs accounted for more than 10% of all hospital admissions in MHCs, with diabetes and its complications, adverse drug events (ADEs), chronic obstructive pulmonary disease (COPD), convulsions and epilepsy, and congestive heart failure being the most common causes. Compared with non-MHCs, MHCs with any mental disorders were more likely to experience a PPH than non-MHCs (overall adjusted rate ratio (ARR) 2.06, 95% confidence interval (CI) 2.03-2.09). ARRs of PPHs were highest for convulsions and epilepsy, nutritional deficiencies, COPD and ADEs. The ARR of a PPH was highest in MHCs with alcohol/drug disorders, affective psychoses, other psychoses and schizophrenia. CONCLUSIONS: MHCs have a significantly higher rate of PPHs than non-MHCs. Improving primary and secondary prevention is warranted in MHCs, especially at the primary care level, despite there may be different thresholds for admission in people with established physical disease that is influenced by whether or not they have comorbid mental illness.


Asunto(s)
Hospitalización/estadística & datos numéricos , Trastornos Mentales/epidemiología , Adulto , Estudios de Cohortes , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atención Primaria de Salud/estadística & datos numéricos , Riesgo , Australia Occidental/epidemiología
12.
Cleve Clin J Med ; 88(3): 157-162, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648968

RESUMEN

Vaccination in pregnancy is an important part of maternity care, but maternal immunization rates continue to be below national benchmarks. Influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccinations have been shown to be safe and provide important protections to pregnant women, the fetus, and neonates. Although obstetrician-gynecologists provide the bulk of pregnancy care, general internists and medical specialists have frequent clinical encounters with maternity patients and should assist in immunization education and administration.


Asunto(s)
Difteria , Servicios de Salud Materna , Tétanos , Tos Ferina , Femenino , Humanos , Recién Nacido , Embarazo , Vacunación , Tos Ferina/prevención & control
13.
ACS Appl Mater Interfaces ; 13(7): 9091-9100, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33560818

RESUMEN

An in situ microbalance and infrared spectroscopic study of alternating exposures to Me2Au(S2CNEt2) and ozone illuminates the organometallic chemistry that allows for the thermal atomic layer deposition (ALD) of gold. In situ quartz crystal microbalance (QCM) studies resolve the nucleation delay and island growth of Au on a freshly prepared aluminum oxide surface with single cycle resolution, revealing inhibition for 40 cycles prior to slow nucleation and film coalescence that extends over 300 cycles. In situ infrared spectroscopy informed by first-principles computation provides insight into the surface chemistry of the self-limiting half-reactions, which are consistent with an oxidized Au surface mechanism. X-ray diffraction of ALD-grown gold on silicon, silica, sapphire, and mica reveals consistent out-of-plane oriented crystalline film growth as well as epitaxially directed in-plane orientation on closely lattice-matched mica at a relatively low growth temperature of 180 °C. A more complete understanding of ALD gold nucleation, surface chemistry, and epitaxy will inform the next generation of low-temperature, nanoscale, textured depositions that are applicable to high surface area supports.

14.
ACS Appl Mater Interfaces ; 10(7): 6484-6490, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29378110

RESUMEN

A self-assembled nanodielectric (SAND) is an ultrathin film, typically with periodic layer pairs of high-k oxide and phosphonic-acid-based π-electron (PAE) molecular layers. IPAE, having a molecular structure similar to that of PAE but with an inverted dipole direction, has recently been developed for use in thin-film transistors. Here we report that replacing PAE with IPAE in SAND-based thin-film transistors induces sizable threshold and turn-on voltage shifts, indicating the flipping of the built-in SAND polarity. The bromide counteranion (Br-) associated with the cationic stilbazolium portion of PAE or IPAE is of great importance, because its relative position strongly affects the electric dipole moment of the organic layer. Hence, a set of X-ray synchrotron measurements were designed and performed to directly measure and compare the Br- distributions within the PAE and IPAE SANDs. Two trilayer SANDs, consisting of a PAE or IPAE layer sandwiched between an HfOx and a ZrOx layer, were deposited on the SiOx surface of Si substrates or periodic Si/Mo multilayer substrates for X-ray reflectivity and X-ray standing wave measurements, respectively. Along with complementary DFT simulations, the spacings, elemental (Hf, Br, and Zr) distributions, molecular orientations, and Mulliken charge distributions of the PAE and IPAE molecules within each of the SAND trilayers were determined and correlated with the dipole inversion.

15.
Nanoscale ; 10(7): 3469-3479, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29404547

RESUMEN

Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. In particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.

16.
ACS Appl Mater Interfaces ; 9(5): 4667-4673, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28117960

RESUMEN

Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>104 cm-1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm-1, as well as a hole concentration of 1015 cm-3. Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.

17.
ACS Appl Mater Interfaces ; 9(39): 33429-33436, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28379011

RESUMEN

Atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au, and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H2-plasma pretreatment of the Au substrate prior to the gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that the ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Al2O3 ALD inhibition. This is the first example of Al2O3 ALD inhibition from a vapor-deposited SAM. The inhibitions of Al2O3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. Atomic force microscopy and grazing-incidence X-ray fluorescence further reveal insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.

18.
ACS Nano ; 11(1): 693-701, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27991757

RESUMEN

Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

19.
ACS Appl Mater Interfaces ; 8(31): 19853-9, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27454741

RESUMEN

Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analytical fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.

20.
ACS Appl Mater Interfaces ; 8(38): 24983-8, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27617568

RESUMEN

We demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA