Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 228(Suppl 7): S594-S603, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37288605

RESUMEN

Ebola virus (EBOV) causes lethal disease in ferrets, whereas Marburg virus (MARV) does not. To investigate this difference, we first evaluated viral entry by infecting ferret spleen cells with vesicular stomatitis viruses pseudotyped with either MARV or EBOV glycoprotein (GP). Both viruses were capable of infecting ferret spleen cells, suggesting that lack of disease is not due to a block in MARV entry. Next, we evaluated replication kinetics of authentic MARV and EBOV in ferret cell lines and demonstrated that, unlike EBOV, MARV was only capable of low levels of replication. Finally, we inoculated ferrets with a recombinant EBOV expressing MARV GP in place of EBOV GP. Infection resulted in uniformly lethal disease within 7-9 days postinfection, while MARV-inoculated animals survived until study endpoint. Together these data suggest that the inability of MARV to cause disease in ferrets is not entirely linked to GP.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Hurones , Línea Celular , Glicoproteínas/genética
2.
NPJ Vaccines ; 8(1): 91, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301890

RESUMEN

Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.

3.
ILAR J ; 61(1): 62-71, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951727

RESUMEN

The domestic ferret (Mustela putorius furo) has long been a popular animal model for evaluating viral pathogenesis and transmission as well as the efficacy of candidate countermeasures. Without question, the ferret has been most widely implemented for modeling respiratory viruses, particularly influenza viruses; however, in recent years, it has gained attention as a novel animal model for characterizing filovirus infections. Although ferrets appear resistant to infection and disease caused by Marburg and Ravn viruses, they are highly susceptible to lethal disease caused by Ebola, Sudan, Bundibugyo, and Reston viruses. Notably, unlike the immunocompetent rodent models of filovirus infection, ferrets are susceptible to lethal disease caused by wild-type viruses, and they recapitulate many aspects of human filovirus disease, including systemic virus replication, coagulation abnormalities, and a dysregulated immune response. Along with the stringency with which they reproduce Ebola disease, their relatively small size and availability make ferrets an attractive choice for countermeasure evaluation and pathogenesis modeling. Indeed, they are so far the only small animal model available for Bundibugyo virus. Nevertheless, ferrets do have their limitations, including the lack of commercially available reagents to dissect host responses and their unproven predictive value in therapeutic evaluation. Although the use of the ferret model in ebolavirus research has been consistent over the last few years, its widespread use and utility remains to be fully proven. This review provides a comprehensive overview of the ferret models of filovirus infection and perspective on their ongoing use in pathogenesis modeling and countermeasure evaluation.


Asunto(s)
Ebolavirus , Infecciones por Filoviridae , Fiebre Hemorrágica Ebola , Animales , Modelos Animales de Enfermedad , Hurones , Infecciones por Filoviridae/patología
4.
Pathogens ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34578125

RESUMEN

Vesicular stomatitis virus (VSV), which belongs to the Vesiculovirus genus of the family Rhabdoviridae, is a well studied livestock pathogen and prototypic non-segmented, negative-sense RNA virus. Although VSV is responsible for causing economically significant outbreaks of vesicular stomatitis in cattle, horses, and swine, the virus also represents a valuable research tool for molecular biologists and virologists. Indeed, the establishment of a reverse genetics system for the recovery of infectious VSV from cDNA transformed the utility of this virus and paved the way for its use as a vaccine vector. A highly effective VSV-based vaccine against Ebola virus recently received clinical approval, and many other VSV-based vaccines have been developed, particularly for high-consequence viruses. This review seeks to provide a holistic but concise overview of VSV, covering the virus's ascension from perennial agricultural scourge to promising medical countermeasure, with a particular focus on vaccines.

5.
Microorganisms ; 9(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494199

RESUMEN

Filoviruses are zoonotic, negative-sense RNA viruses, most of which are capable of causing severe disease in humans and nonhuman primates, often with high case fatality rates. Among these viruses, those belonging to the Ebolavirus genus-particularly Ebola virus, Sudan virus, and Bundibugyo virus-represent some of the most pathogenic to humans. Taï Forest virus (TAFV) is thought to be among the least pathogenic ebolaviruses; however, only a single non-fatal case has been documented in humans, in 1994. With the recent success of the ferret as a lethal model for a number of ebolaviruses, we set out to evaluate its suitability as a model for TAFV. Our results demonstrate that, unlike other ebolaviruses, TAFV infection in ferrets does not result in lethal disease. None of the intramuscularly inoculated animals demonstrated any overt signs of disease, whereas the intranasally inoculated animals exhibited mild to moderate weight loss during the early stage of infection but recovered quickly. Low levels of viral RNA were detected in the blood and tissues of several animals, particularly the intranasally inoculated animals, and all animals mounted a humoral immune response, with high titers of GP-specific IgG detectable as early as 14 days post-infection. These data provide additional insight into the pathogenesis of TAFV.

6.
Viruses ; 11(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683550

RESUMEN

Ebola virus (EBOV) is a highly lethal pathogen that has caused several outbreaks of severe hemorrhagic fever in humans since its emergence in 1976. The EBOV glycoprotein (GP1,2) is the sole viral envelope protein and a major component of immunogenicity; it is encoded by the GP gene along with two truncated versions: soluble GP (sGP) and small soluble GP (ssGP). sGP is, in fact, the primary product of the GP gene, and it is secreted in abundance during EBOV infection. Since sGP shares large portions of its sequence with GP1,2, it has been hypothesized that sGP may subvert the host immune response by inducing antibodies against sGP rather than GP1,2. Several reports have shown that sGP plays multiple roles that contribute to the complex pathogenesis of EBOV. In this review, we focus on sGP and discuss its possible roles with regards to the pathogenesis of EBOV and the development of specific antiviral drugs.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Proteínas del Envoltorio Viral , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Biomarcadores , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Genes Virales , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Evasión Inmune , Inmunidad Innata , Modificación Traduccional de las Proteínas , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA