Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Biol Sci ; 289(1966): 20212512, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016539

RESUMEN

Ecologists have long sought to understand space use and mechanisms underlying patterns observed in nature. We developed an optimality landscape and mechanistic territory model to understand mechanisms driving space use and compared model predictions to empirical reality. We demonstrate our approach using grey wolves (Canis lupus). In the model, simulated animals selected territories to economically acquire resources by selecting patches with greatest value, accounting for benefits, costs and trade-offs of defending and using space on the optimality landscape. Our approach successfully predicted and explained first- and second-order space use of wolves, including the population's distribution, territories of individual packs, and influences of prey density, competitor density, human-caused mortality risk and seasonality. It accomplished this using simple behavioural rules and limited data to inform the optimality landscape. Results contribute evidence that economical territory selection is a mechanistic bridge between space use and animal distribution on the landscape. This approach and resulting gains in knowledge enable predicting effects of a wide range of environmental conditions, contributing to both basic ecological understanding of natural systems and conservation. We expect this approach will demonstrate applicability across diverse habitats and species, and that its foundation can help continue to advance understanding of spatial behaviour.


Asunto(s)
Carnívoros , Lobos , Animales , Ecosistema , Territorialidad
2.
PLoS Genet ; 14(10): e1007651, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30286074

RESUMEN

Beetle horns are attractive models for studying the evolution of novel traits, as they display diverse shapes, sizes, and numbers among closely related species within the family Scarabaeidae. Horns radiated prolifically and independently in two distant subfamilies of scarabs, the dung beetles (Scarabaeinae), and the rhinoceros beetles (Dynastinae). However, current knowledge of the mechanisms underlying horn diversification remains limited to a single genus of dung beetles, Onthophagus. Here we unveil 11 horn formation genes in a rhinoceros beetle, Trypoxylus dichotomus. These 11 genes are mostly categorized as larval head- and appendage-patterning genes that also are involved in Onthophagus horn formation, suggesting the same suite of genes was recruited in each lineage during horn evolution. Although our RNAi analyses reveal interesting differences in the functions of a few of these genes, the overwhelming conclusion is that both head and thoracic horns develop similarly in Trypoxylus and Onthophagus, originating in the same developmental regions and deploying similar portions of appendage patterning networks during their growth. Our findings highlight deep parallels in the development of rhinoceros and dung beetle horns, suggesting either that both horn types arose in the common ancestor of all scarabs, a surprising reconstruction of horn evolution that would mean the majority of scarab species (~35,000) actively repress horn growth, or that parallel origins of these extravagant structures resulted from repeated co-option of the same underlying developmental processes.


Asunto(s)
Escarabajos/genética , Larva/genética , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/genética , Cuernos/anatomía & histología , Cuernos/embriología , Fenotipo , Interferencia de ARN , Especificidad de la Especie
3.
Proc Biol Sci ; 287(1928): 20200254, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517625

RESUMEN

A current evolutionary hypothesis predicts that the most extreme forms of animal weaponry arise in systems where combatants fight each other one-to-one, in duels. It has also been suggested that arms races in human interstate conflicts are more likely to escalate in cases where there are only two opponents. However, directly testing whether duels matter for weapon investment is difficult in animals and impossible in interstate conflicts. Here, we test whether superior combatants experience a disproportionate advantage in duels, as compared with multi-combatant skirmishes, in a system analogous to both animal and military contests: the battles fought by artificial intelligence agents in a computer war game. We found that combatants with experimentally improved fighting power had a large advantage in duels, but that this advantage deteriorated as the complexity of the battlefield was increased by the addition of further combatants. This pattern remained under the two different forms of the advantage granted to our focal artificial intelligence (AI) combatants, and became reversed when we switched the roles to feature a weak focal AI among strong opponents. Our results suggest that one-on-one combat may trigger arms races in diverse systems. These results corroborate the outcomes of studies of both animal and interstate contests, and suggest that elements of animal contest theory may be widely applicable to arms races generally.


Asunto(s)
Agresión , Conducta Animal , Conducta Competitiva , Animales , Inteligencia Artificial , Evolución Biológica , Cibernética , Armas
4.
Proc Biol Sci ; 286(1905): 20191063, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31238851

RESUMEN

Sexually selected weapons often function as honest signals of fighting ability. If poor-quality individuals produce high-quality weapons, then receivers should focus on other, more reliable signals. Cost is one way to maintain signal integrity. The costs of weapons tend to increase with relative weapon size, and thereby restrict large weapons to high-quality individuals who can produce and maintain them. Weapon cost, however, appears to be unpredictably variable both within and across taxa, and the mechanisms underlying this variation remain unclear. We suggest variation in weapon cost may result from variation in weapon composition-specifically, differences in the amount of muscle mass directly associated with the weapon. We test this idea by measuring the metabolic cost of sexually selected weapons in seven arthropod species and relating these measures to weapon muscle mass. We show that individuals with relatively large weapon muscles have disproportionately high resting metabolic rates and provide evidence that this trend is driven by weapon muscle mass. Overall, our results suggest that variation in weapon cost can be partially explained by variation in weapon morphology and that the integrity of weapon signals may be maintained by increased metabolic cost in species with relatively high weapon muscle mass.


Asunto(s)
Artrópodos/fisiología , Músculos , Conducta Sexual , Animales , Fenotipo , Armas
5.
Dev Biol ; 422(1): 24-32, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989519

RESUMEN

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.


Asunto(s)
Tipificación del Cuerpo/genética , Escarabajos/embriología , Mandíbula/embriología , Caracteres Sexuales , Animales , Evolución Biológica , Receptores ErbB/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Masculino , Procesos de Determinación del Sexo
6.
Proc Natl Acad Sci U S A ; 111(40): 14484-8, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25201949

RESUMEN

The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male-male competition can drive the diversification of animal weapons.


Asunto(s)
Adaptación Biológica , Agresión/fisiología , Escarabajos/fisiología , Cuernos/fisiología , Animales , Evolución Biológica , Escarabajos/anatomía & histología , Escarabajos/clasificación , Conducta Competitiva/fisiología , Femenino , Análisis de Elementos Finitos , Cuernos/anatomía & histología , Masculino , Modelos Biológicos , Factores Sexuales , Especificidad de la Especie
7.
PLoS Genet ; 10(1): e1004098, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453990

RESUMEN

Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH) signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to determine the developmental fates and final sizes of nutrition-dependent secondary-sexual characters.


Asunto(s)
Escarabajos/genética , Ingestión de Alimentos/genética , Hormonas Juveniles/genética , Caracteres Sexuales , Transducción de Señal , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Hormonas Juveniles/metabolismo , Larva/crecimiento & desarrollo , Masculino , Mandíbula/crecimiento & desarrollo , Interferencia de ARN , Diferenciación Sexual/genética , Factores de Transcripción/genética
8.
BMC Genomics ; 17: 250, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001106

RESUMEN

BACKGROUND: Genes in the sex determination pathway are important regulators of sexually dimorphic animal traits, including the elaborate and exaggerated male ornaments and weapons of sexual selection. In this study, we identified and functionally analyzed members of the sex determination gene family in the golden metallic stag beetle Cyclommatus metallifer, which exhibits extreme differences in mandible size between males and females. RESULTS: We constructed a C. metallifer transcriptomic database from larval and prepupal developmental stages and tissues of both males and females. Using Roche 454 pyrosequencing, we generated a de novo assembled database from a total of 1,223,516 raw reads, which resulted in 14,565 isotigs (putative transcript isoforms) contained in 10,794 isogroups (putative identified genes). We queried this database for C. metallifer conserved sex determination genes and identified 14 candidate sex determination pathway genes. We then characterized the roles of several of these genes in development of extreme sexual dimorphic traits in this species. We performed molecular expression analyses with RT-PCR and functional analyses using RNAi on three C. metallifer candidate genes--Sex-lethal (CmSxl), transformer-2 (Cmtra2), and intersex (Cmix). No differences in expression pattern were found between the sexes for any of these three genes. In the RNAi gene-knockdown experiments, we found that only the Cmix had any effect on sexually dimorphic morphology, and these mimicked the effects of Cmdsx knockdown in females. Knockdown of CmSxl had no measurable effects on stag beetle phenotype, while knockdown of Cmtra2 resulted in complete lethality at the prepupal period. These results indicate that the roles of CmSxl and Cmtra2 in the sex determination cascade are likely to have diverged in stag beetles when compared to Drosophila. Our results also suggest that Cmix has a conserved role in this pathway. In addition to those three genes, we also performed a more complete functional analysis of the C. metallifer dsx gene (Cmdsx) to identify the isoforms that regulate dimorphism more fully using exon-specific RNAi. We identified a total of 16 alternative splice variants of the Cmdsx gene that code for up to 14 separate exons. Despite the variation in RNA splice products of the Cmdsx gene, only four protein isoforms are predicted. The results of our exon-specific RNAi indicated that the essential CmDsx isoform for postembryonic male differentiation is CmDsxB, whereas postembryonic female specific differentiation is mainly regulated by CmDsxD. CONCLUSIONS: Taken together, our results highlight the importance of studying the function of highly conserved sex determination pathways in numerous insect species, especially those with dramatic and exaggerated sexual dimorphism, because conservation in protein structure does not always translate into conservation in downstream function.


Asunto(s)
Escarabajos/genética , Genes de Insecto , Familia de Multigenes , Diferenciación Sexual/genética , Empalme Alternativo , Animales , Escarabajos/fisiología , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Isoformas de Proteínas/genética , Interferencia de ARN , Análisis de Secuencia de ARN , Procesos de Determinación del Sexo
9.
J Therm Biol ; 62(Pt A): 76-83, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27839554

RESUMEN

Do insect larvae ever self-heat significantly from their own metabolic activity and, if so, under what sets of environmental temperatures and across what ranges of body size? We examine these questions using larvae of the Japanese rhinoceros beetle (Trypoxylus dichotomus), chosen for their large size (>20g), simple body plan, and underground lifestyle. Using CO2 respirometry, we measured larval metabolic rates then converted measured rates of gas exchange into rates of heat production and developed a mathematical model to predict how much steady state body temperatures of underground insects would increase above ambient depending on body size. Collectively, our results suggest that large, extant larvae (20-30g body mass) can self-heat by at most 2°C, and under many common conditions (shallow depths, moister soils) would self-heat by less than 1°C. By extending the model to even larger (hypothetical) body sizes, we show that underground insects with masses >1kg could heat, in warm, dry soils, by 1.5-6°C or more. Additional experiments showed that larval critical thermal maxima (CTmax) were in excess of 43.5°C and that larvae could behaviorally thermoregulate on a thermal gradient bar. Together, these results suggest that large larvae living underground likely regulate their temperatures primarily using behavior; self-heating by metabolism likely contributes little to their heat budgets, at least in most common soil conditions.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Escarabajos/fisiología , Larva/fisiología , Animales , Tamaño Corporal , Escarabajos/metabolismo , Larva/metabolismo , Modelos Biológicos , Temperatura
10.
Dev Dyn ; 244(9): 1039-1045, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25997872

RESUMEN

BACKGROUND: Insects exhibit a diversity of environmentally sensitive phenotypes that allow them to be an extraordinarily successful group. For example, mandible size in male stag beetles is exquisitely sensitive to the larval nutritional environment and is a reliable signal of male condition. RESULTS: To date, studies of how such phenotypically plastic traits develop have focused on two types of mechanistic processes. Local, tissue-specific genetic mechanisms specify the shape and approximate final size of structures, whereas whole-animal hormonal signaling mechanisms modulate trait growth in response to environmental circumstance, including the body size and nutritional state of each individual. Hormones such as juvenile hormone, ecdysteroids, and/or ligands of the insulin-signaling pathway specify whether traits grow and regulate how much growth occurs across a diversity of insect groups. What remains to be shown is how the local, tissue-specific developmental genetic pathways interact with these whole animal hormonal signaling pathways during development to yield phenotypically plastic patterns of trait growth. CONCLUSIONS: Because the Fat/Hippo signaling pathway coordinates trait growth and development through its interactions with morphogens and hormonal pathways, we propose that Fat/Hippo signaling is a missing mechanistic link coordinating environmentally sensitive trait development in insects. Developmental Dynamics 244:1039-1045, 2015. © 2015 Wiley Periodicals, Inc.

11.
Annu Rev Entomol ; 60: 453-72, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25341090

RESUMEN

Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.


Asunto(s)
Insectos/crecimiento & desarrollo , Insectos/genética , Fenotipo , Animales , Evolución Biológica , Insectos/anatomía & histología , Selección Genética
12.
Bioessays ; 35(10): 889-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23852854

RESUMEN

Sexually-selected exaggerated traits tend to be unusually reliable signals of individual condition, as their expression tends to be more sensitive to nutritional history and physiological circumstance than that of other phenotypes. As such, these traits are the foundation for many models of sexual selection and animal communication, such as "handicap" and "good genes" models. Exactly how expression of these traits is linked to the bearer's condition has been a central yet unresolved question, in part because the underlying physiological mechanisms regulating their development have remained largely unknown. Recent discoveries across animals as diverse as deer, beetles, and flies now implicate the widely conserved insulin-like signaling pathway, as a common physiological mechanism regulating condition-sensitive structures with extreme growth. This raises the exciting possibility that one highly conserved pathway may underlie the evolution of trait exaggeration in a multitude of sexually-selected signal traits across the animal kingdom.


Asunto(s)
Fenotipo , Selección Genética , Conducta Sexual Animal/fisiología , Animales , Secuencia Conservada/genética , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Insulina/fisiología , Masculino , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Factores Sexuales , Transducción de Señal
13.
PLoS One ; 19(3): e0299796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483942

RESUMEN

Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated horns that are used to compete for territories. Larger males with larger horns tend to win these competitions, giving them access to females. Agonistic interactions include what appears to be assessment and often end without escalating to physical combat. However, it is unknown what information competitors use to assess each other. In many insect species chemical signals can carry a range of information, including social position, nutritional state, morphology, and sex. Specifically, cuticular hydrocarbons (CHCs), which are waxes excreted on the surface of insect exoskeletons, can communicate a variety of information. Here, we asked whether CHCs in rhinoceros beetles carry information about sex, body size, and condition that could be used by males during assessment behavior. Multivariate analysis of hydrocarbon composition revealed patterns associated with both sex and body size. We suggest that Rhinoceros beetles could be communicating information through CHCs that would explain behavioral decisions.


Asunto(s)
Escarabajos , Caracteres Sexuales , Animales , Masculino , Femenino , Escarabajos/anatomía & histología , Tamaño Corporal , Perisodáctilos , Hidrocarburos
14.
Arthropod Struct Dev ; 80: 101360, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704965

RESUMEN

Mate choice and male-male combat over successful mating often cause disproportionate exaggeration of male trait relative to body size. However, the exaggeration is often not the only trait involved with male-male combat and mate choice: suites of co-expressed traits may function together as a coordinated unit. When this occurs, dimorphism may be expected for these additional, non-exaggerated, structures. S. femorata males have disproportionately large hind-legs used in male-male combat over females. During the fights, fore- and mid-legs are used to keep males in positions where advantageous for leverage. Because use of the exaggerated hind-legs is coordinated with the other legs, they will coevolve as a functional unit. Here, we show that 1) S. femorata has sexual size differences in all three legs; 2) males show positive allometry in the relative sizes of all three legs; and 3) microstructures of tarsi on the fore- and mid-legs are also sexually dimorphic. Despite these differences in the tarsal microstructure, 4) adhesion forces of the tarsi had no sexual difference in flat surface. The microstructure would be specialized on attaching elytra surface. These results suggest that the three pairs of legs function together during fighting behavior, with hind-legs employed primarily for fighting, and the fore- and mid-legs functioning to grip females, keeping males positioned on the back of the female during combat.


Asunto(s)
Escarabajos , Extremidades , Caracteres Sexuales , Animales , Escarabajos/anatomía & histología , Escarabajos/fisiología , Masculino , Extremidades/anatomía & histología , Femenino , Microscopía Electrónica de Rastreo , Conducta Sexual Animal
15.
J Exp Zool B Mol Dev Evol ; 320(5): 295-306, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23703784

RESUMEN

Eusocial insects exhibit various morphological castes associated with the division of labor within a colony. Termite soldiers possess defensive traits including mandibles that are greatly exaggerated and enlarged, as compared to termite reproductives and workers. The enlarged mandibles of soldiers are known to result from dynamic morphogenesis during soldier differentiation that can be induced by juvenile hormone and its analogs. However, the detailed developmental mechanisms still remain unresolved. Because the insulin/insulin-like growth factor signaling (IIS) pathway has been shown to regulate the relative sizes of organs (i.e., allometry) in other insects, we examined the expression profiles of major IIS factors in the damp-wood termite Hodotermopsis sjostedti, during soldier differentiation. The relative expression patterns of orthologs for termite InR (HsjInR), PKB/Akt (HsjPKB/Akt), and FOXO (HsjFOXO) suggest that HsjInR and HsjPKB/Akt were up-regulated in the period of elongation of mandibles during soldier development. In situ hybridization showed that HsjInR was strongly expressed in the mandibular epithelial tissues, and RNA interference (RNAi) for HsjInR disrupted soldier-specific morphogenesis including mandibular elongation. These results suggest that signaling through the IIS pathway is required for soldier-specific morphogenesis. In addition, up-regulation of the IIS pathway in other body tissues occurred at earlier stages of development, indicating that there is tissue-specific IIS regulation. Because the IIS pathway is generally thought to act upstream of JH in insects, our results suggest the damp-wood termite may have evolved a novel feedback loop between JH and IIS that enables social interactions, rather than nutrition, to regulate caste determination.


Asunto(s)
Insulina/metabolismo , Isópteros/crecimiento & desarrollo , Morfogénesis , Animales , Hibridación in Situ , Hormonas Juveniles/metabolismo , Transducción de Señal , Madera/química
16.
Arch Insect Biochem Physiol ; 82(1): 43-57, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23136112

RESUMEN

The insulin signaling pathway is the primary signaling pathway coupling growth with nutritional condition in all animals. Sensitivity to circulating levels of insulin has been shown to regulate the growth of specific traits in a dose-dependent manner in response to environmental conditions in a diversity of insect species. Alternative phenotypes in insects manifest in a variety of morphologies such as the sexually dimorphic and male dimorphic horned beetles. Large males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a thoracic horn up to twice the length of the body whereas small males and females never develop this horn. The regulation of this dimorphism is known to be nutrition dependent for males. We focused on the insulin signaling pathway as a potential regulator of this dimorphism. We sequenced a full-length gene transcript encoding the O. nigriventris insulin receptor (OnInR), which is the receptor for circulating insulin and insulin-like peptides in animals. We show that the predicted OnInR protein is similar in overall amino acid identity to other insulin receptors (InRs) and is most closely related phylogenetically to insect InRs. Expression of the OnInR transcript was found during development of imaginal tissues in both males and females. However, expression of OnInR in the region where a horn would grow of small males and female was significantly higher than in the horn tissues of large males at the end of growth. This variation in OnInR expression between sexes and morphs indicates a role for the InR in polymorphic horn development.


Asunto(s)
Escarabajos/metabolismo , Receptor de Insulina/metabolismo , Animales , Clonación Molecular , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , ADN Complementario , Femenino , Regulación de la Expresión Génica , Larva/genética , Larva/metabolismo , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , Receptor de Insulina/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Homología de Secuencia
17.
bioRxiv ; 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36747788

RESUMEN

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling sound elements in recordings of animal sounds and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.

18.
PLoS One ; 18(7): e0288172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494341

RESUMEN

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling elements in recordings of animal sounds, and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.


Asunto(s)
Aprendizaje Profundo , Animales , Incertidumbre , Reproducibilidad de los Resultados , Acústica , Ballenas , Vocalización Animal
19.
Sci Rep ; 13(1): 8735, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253792

RESUMEN

The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.


Asunto(s)
Escarabajos , Animales , Femenino , Masculino , Escarabajos/genética , Fenotipo , Caracteres Sexuales
20.
Curr Biol ; 33(20): 4285-4297.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37734374

RESUMEN

What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.


Asunto(s)
Evolución Biológica , Escarabajos , Cuernos , Animales , Masculino , Fenómenos Biomecánicos/fisiología , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Cuernos/anatomía & histología , Cuernos/crecimiento & desarrollo , Cuernos/fisiología , Elevación , Caracteres Sexuales , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA