RESUMEN
BACKGROUND: Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES: To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS: CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS: The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION: The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Niño , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Filogenia , Genoma Viral/genética , BrasilRESUMEN
INTRODUCTION: Cancer patients with SARS-CoV-2 infection can experience a broad range of clinical manifestations and outcomes. Previous studies have demonstrated an association between torque teno virus (TTV) load and deficiencies of the immune system. The impact of SARS-CoV-2 and TTV viral loads in cancer patients is unknown. METHODS: In this retrospective study, 157 cancer patients and 191 noncancer controls were analysed for SARS-CoV-2 RNA and TTV DNA presence. RESULTS: SARS-CoV-2 RNA was detected in 66.2% of cancer patients and in 68.6% of noncancer control subjects. In SARS-CoV-2-positive patients, TTV was detectable in 79.8% of cancer patients, while in controls, TTV was detected in 71.7% of subjects. No statistically significant correlation was found between TTV and SARS-CoV-2 loads in cancer patients. However, the 100-day survival rate in cancer patients who died from COVID-19 was significantly lower in the TTV-positive group than in the TTV-negative group (P = 0.0475). In the cancer TTV-positive group, those who died also had a higher load of TTV than those who did not die (P = 0.0097). CONCLUSIONS: Our findings indicated that the presence of TTV in nasopharyngeal swabs from cancer patients was related to a higher number of deaths from COVID-19 and to a higher TTV DNA load.
Asunto(s)
COVID-19 , Infecciones por Virus ADN , Neoplasias , Torque teno virus , ADN Viral , Progresión de la Enfermedad , Humanos , Neoplasias/complicaciones , ARN Viral , Estudios Retrospectivos , SARS-CoV-2 , Torque teno virus/genética , Carga ViralRESUMEN
BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus that can cause chronic and debilitating manifestations. The first autochthonous case in Rio de Janeiro state was diagnosed in 2015, and an outbreak was declared in 2016. OBJECTIVE: The aim of this work was to evaluate CHIKV viral load in serum, plasma and urine in cancer patients to determine the best sample for diagnosis, as well as perform molecular characterisation and phylogenetic analysis of circulating strains. METHODS: Paired serum, plasma and urine collected from 31 cancer patients were tested by real-time quantitative polymerase chain reaction (qPCR) and a segment of the CHIKV E1 gene was sequenced. FINDINGS: We detected 11 CHIKV+ oncological patients. Paired samples analyses of nine patients showed a different pattern of detection. Also, a higher viral load in plasma (6.84 log10) and serum (6.07 log10) vs urine (3.76 log10) was found. Phylogenetic analysis and molecular characterisation revealed East/Central/Southern Africa (ECSA) genotype circulation and three amino acids substitutions (E1-K211T, E1-M269V, E1-T288I) in positive patients. MAIN CONCLUSION: The results indicate the bioequivalence of serum and plasma for CHIKV diagnosis, with urine being an important complement. ECSA genotype was circulating among patients in the period of the 2016 outbreak with K211T, M269V and T288I substitution.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Neoplasias , Brasil/epidemiología , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Humanos , Neoplasias/complicaciones , FilogeniaAsunto(s)
Leucemia Linfocítica Crónica de Células B/patología , Receptores de Antígenos de Linfocitos B/análisis , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Brasil/epidemiología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/epidemiología , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by gait and limb ataxia. This disease is caused by the expansion of a (CAG)(n) located in the ATXN2, that encodes a polyglutamine tract of more than 34 repeats. Lately, alleles with 32-33 CAGs have been associated to late-onset disease cases. Repeat interruptions by CAA triplets are common in normal alleles, while expanded alleles usually contain a pure repeat tract. To investigate the mutational origin and the instability associated to the ATXN2 repeat, we performed an extensive haplotype study and sequencing of the CAG/CAA repeat, in a cohort of families of different geographic origins and phenotypes. Our results showed (1) CAA interruptions also in expanded ATXN2 alleles; (2) that pathological CAA interrupted alleles shared an ancestral haplotype with pure expanded alleles; and (3) higher genetic diversity in European SCA2 families, suggesting an older European ancestry of SCA2. In conclusion, we found instability towards expansion in interrupted ATXN2 alleles and a shared ancestral ATXN2 haplotype for pure and interrupted expanded alleles; this finding has strong implications in mutation diagnosis and counseling. Our results indicate that interrupted alleles, below the pathological threshold, may be a reservoir of mutable alleles, prone to expansion in subsequent generations, leading to full disease mutation.
Asunto(s)
Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/genética , Alelos , Ataxinas , Estudios de Casos y Controles , Análisis Mutacional de ADN , Salud de la Familia , Variación Genética , Haplotipos , Humanos , Modelos Genéticos , Péptidos/genética , Fenotipo , Expansión de Repetición de TrinucleótidoRESUMEN
Cytogenetic damage in individuals occupationally exposed to pesticides has received the attention of investigators in several countries, but no definitive conclusions can yet be made. The present study aimed at assessing if prolonged exposure to complex mixtures of pesticides leads to an increase in cytogenetic damage. Vineyard workers exposed to pesticides in Caxias do Sul (Brazil) were evaluated using the micronucleus (MN) test in binucleated lymphocytes and the comet assay in peripheral leukocytes. In order to evaluate if genetically determined individual variations in xenobiotic metabolizing capacity could modify individual susceptibility to the possible genotoxic effects of pesticides, the subjects were genotyped for several genes: GSTT1, GSTM1, GSTP1, CYP1A1, CYP2E1 and PON. The study involved a total number of 173 men: 108 were agricultural workers exposed to pesticides and 65 were controls. The present study showed a high rate of MN and DNA damage in pesticide-exposed individuals (P Asunto(s)
Daño del ADN/genética
, Enzimas/genética
, Exposición Profesional
, Plaguicidas/toxicidad
, Polimorfismo Genético
, Adulto
, Agricultura
, Arildialquilfosfatasa/genética
, Brasil
, Citocromo P-450 CYP1A1/genética
, Citocromo P-450 CYP2E1/genética
, Gutatión-S-Transferasa pi/genética
, Glutatión Transferasa/genética
, Humanos
, Masculino
, Pruebas de Micronúcleos
, Persona de Mediana Edad
RESUMEN
BACKGROUND Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.
RESUMEN
BACKGROUND: Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. METHODS: With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. RESULTS: We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. CONCLUSIONS: Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation.
RESUMEN
BACKGROUND Chikungunya virus (CHIKV) is an arbovirus that can cause chronic and debilitating manifestations. The first autochthonous case in Rio de Janeiro state was diagnosed in 2015, and an outbreak was declared in 2016. OBJECTIVE The aim of this work was to evaluate CHIKV viral load in serum, plasma and urine in cancer patients to determine the best sample for diagnosis, as well as perform molecular characterisation and phylogenetic analysis of circulating strains. METHODS Paired serum, plasma and urine collected from 31 cancer patients were tested by real-time quantitative polymerase chain reaction (qPCR) and a segment of the CHIKV E1 gene was sequenced. FINDINGS We detected 11 CHIKV+ oncological patients. Paired samples analyses of nine patients showed a different pattern of detection. Also, a higher viral load in plasma (6.84 log10) and serum (6.07 log10) vs urine (3.76 log10) was found. Phylogenetic analysis and molecular characterisation revealed East/Central/Southern Africa (ECSA) genotype circulation and three amino acids substitutions (E1-K211T, E1-M269V, E1-T288I) in positive patients. MAIN CONCLUSION The results indicate the bioequivalence of serum and plasma for CHIKV diagnosis, with urine being an important complement. ECSA genotype was circulating among patients in the period of the 2016 outbreak with K211T, M269V and T288I substitution.
RESUMEN
Diphyllobothriasis is caused in humans by infection with adult tapeworms of the genus Diphyllobothrium acquired by consuming raw or undercooked freshwater fish. Diphyllobothrium latum was confirmed by examination of the gravid proglottids and typical operculated eggs in the stool. The patient had a history of eating crustaceans and fish. This is the case report of the first Brazilian infected.
Asunto(s)
Difilobotriosis/diagnóstico , Diphyllobothrium/aislamiento & purificación , Heces/parasitología , Anciano , Animales , Antihelmínticos/uso terapéutico , Brasil , Humanos , Praziquantel/uso terapéuticoRESUMEN
BACKGROUND: The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. FINDINGS: STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. CONCLUSION: STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.
Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Flujo de Trabajo , Bases de Datos Factuales/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Internet , Filogenia , Reproducibilidad de los ResultadosRESUMEN
The identification of the clinically relevant viridans streptococci group, at species level, is still problematic. The aim of this study was to extract taxonomic information from the complete genome sequences of 67 streptococci, comprising 19 species, by means of genomic analyses, multilocus sequence analysis (MLSA), average amino acid identity (AAI), genomic signatures, genome-to-genome distances (GGD) and codon usage bias. We then attempted to determine the usefulness of these genomic tools for species identification in streptococci. Our results showed that MLSA, AAI and GGD analyses are robust markers to identify streptococci at the species level, for instance, S. pneumoniae, S. mitis, and S. oralis. A Streptococcus species can be defined as a group of strains that share ≥ 95% DNA similarity in MLSA and AAI, and > 70% DNA identity in GGD. This approach allows an advanced understanding of bacterial diversity.
RESUMEN
Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.
Asunto(s)
Mononucleosis Infecciosa/inmunología , Células Asesinas Naturales/inmunología , Animales , Carcinogénesis , Humanos , Inmunidad Innata , Memoria Inmunológica , Mononucleosis Infecciosa/patología , Mononucleosis Infecciosa/prevención & control , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transactivadores/inmunologíaRESUMEN
BACKGROUND: Age at onset (AO) in Machado-Joseph disease (MJD) is closely associated with the length of the CAG repeat at the mutant ATXN3 allele, but there are other intervening factors. Experimental evidence indicates that the normal ATXN3 allele and the C-terminal heat shock protein 70 (Hsp70)-interacting protein (CHIP) may be genetic modifiers of AO in MJD. METHODS: To investigate this hypothesis, we determined the length of normal and expanded CAG repeats at the ATXN3 gene in 210 unrelated patients with MJD. In addition, we genotyped five single nucleotide polymorphisms (SNPs) within the CHIP gene. We first compared the frequencies of the different genotypes in two subgroups of patients who were highly discordant for AO after correction for the length of the expanded CAG allele. The possible modifier effect of each gene was then evaluated in a stepwise multiple linear regression model. RESULTS: AO was associated with the length of the expanded CAG allele (r(2) = 0.596, p < 0.001). Frequencies of the normal CAG repeats at the ATXN3 gene and of CHIP polymorphisms did not differ significantly between groups with highly discordant ages at onset. However, addition of the normal allele improved the model fit for prediction of AO (r(2) = 0.604, p = 0.014). Indeed, we found that the normal CAG allele at ATXN3 had a positive independent effect on AO. CONCLUSION: The normal CAG repeat at the ATXN3 gene has a small but significant influence on AO of MJD.
RESUMEN
Difilobotriose é causada em humanos pela infeccão com vermes adultos do gênero Diphyllobothrium adquiridos pelo consumo de peixe cru ou mal cozido. Diphyllobothrium latum foi confirmado pelo exame dos proglotes grávidos e típicos ovos operculados nas fezes. O paciente havia comido crustáceos e peixes. É o relato do primeiro brasileiro infectado.