Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2219835120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881629

RESUMEN

Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.


Asunto(s)
Anopheles , Malaria , Oryza , Animales , Inversión Cromosómica , Ecotipo , Fitomejoramiento , Anopheles/genética , Oryza/genética
2.
Annu Rev Physiol ; 84: 355-379, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637326

RESUMEN

Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/fisiología , Señalización del Calcio/fisiología , Humanos , Proteínas de la Membrana/fisiología , Ratones , Molécula de Interacción Estromal 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34949717

RESUMEN

Airway remodeling and airway hyperresponsiveness are central drivers of asthma severity. Airway remodeling is a structural change involving the dedifferentiation of airway smooth muscle (ASM) cells from a quiescent to a proliferative and secretory phenotype. Here, we show up-regulation of the endoplasmic reticulum Ca2+ sensor stromal-interacting molecule 1 (STIM1) in ASM of asthmatic mice. STIM1 is required for metabolic and transcriptional reprogramming that supports airway remodeling, including ASM proliferation, migration, secretion of cytokines and extracellular matrix, enhanced mitochondrial mass, and increased oxidative phosphorylation and glycolytic flux. Mechanistically, STIM1-mediated Ca2+ influx is critical for the activation of nuclear factor of activated T cells 4 and subsequent interleukin-6 secretion and transcription of pro-remodeling transcription factors, growth factors, surface receptors, and asthma-associated proteins. STIM1 drives airway hyperresponsiveness in asthmatic mice through enhanced frequency and amplitude of ASM cytosolic Ca2+ oscillations. Our data advocates for ASM STIM1 as a target for asthma therapy.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/fisiopatología , Músculo Liso/fisiopatología , Hipersensibilidad Respiratoria , Molécula de Interacción Estromal 1/fisiología , Animales , Asma/patología , Calcio/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Reprogramación Celular/fisiología , Enfermedad Crónica , Transporte Iónico , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Liso/patología , Molécula de Interacción Estromal 1/genética , Transcripción Genética/fisiología
4.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273363

RESUMEN

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Asunto(s)
Aedes , Culex , Animales , Humanos , Masculino , Filogenia , Elementos Transponibles de ADN/genética , Mosquitos Vectores/genética , Culex/genética , Aedes/genética , Cromosomas , Evolución Molecular
5.
J Biol Chem ; 299(11): 105310, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778728

RESUMEN

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Señalización del Calcio , Humanos , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio/genética , Células Jurkat , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo , Técnicas de Inactivación de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte de Proteínas/genética , Proliferación Celular/genética , Supervivencia Celular/genética
6.
J Theor Biol ; 581: 111740, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38253220

RESUMEN

The role of Ca2+ release-activated Ca2+ (CRAC) channels mediated by ORAI isoforms in calcium signalling has been extensively investigated. It has been shown that the presence or absence of different isoforms has a significant effect on store-operated calcium entry (SOCE). Yoast et al. (2020) showed that, in addition to the reported narrow-spike oscillations (whereby cytosolic calcium decreases quickly after a sharp increase), ORAI1 knockout HEK293 cells were able to oscillate with broad-spike oscillations (whereby cytosolic calcium decreases in a prolonged manner after a sharp increase) when stimulated with a muscarinic agonist. This suggests that Ca2+ influx through ORAI-mediated CRAC channels negatively regulates the duration of Ca2+ oscillations. We hypothesise that, through the activation of protein kinase C (PKC), ORAI1 negatively regulates phospholipase C (PLC) activity to decrease inositol 1,4,5-trisphosphate (IP3) production and limit the duration of agonist-evoked Ca2+ oscillations. Based on this hypothesis, we construct a new mathematical model, which shows that the formation of broad-spike oscillations is highly dependent on the absence of ORAI1. Predictions of this model are consistent with the experimental results.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Humanos , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Canales de Calcio/metabolismo , Proteína Quinasa C , Calcio/metabolismo , Retroalimentación , Células HEK293 , Señalización del Calcio/fisiología , Isoformas de Proteínas/metabolismo
7.
J Biol Chem ; 298(8): 102259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35841929

RESUMEN

The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.


Asunto(s)
Asma , Intercambiador de Sodio-Calcio , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Asma/genética , Calcio/metabolismo , Ratones , Músculo Liso/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(29): 17369-17380, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32641503

RESUMEN

Voltage-gated L-type Ca2+ channel (Cav1.2) blockers (LCCBs) are major drugs for treating hypertension, the preeminent risk factor for heart failure. Vascular smooth muscle cell (VSMC) remodeling is a pathological hallmark of chronic hypertension. VSMC remodeling is characterized by molecular rewiring of the cellular Ca2+ signaling machinery, including down-regulation of Cav1.2 channels and up-regulation of the endoplasmic reticulum (ER) stromal-interacting molecule (STIM) Ca2+ sensor proteins and the plasma membrane ORAI Ca2+ channels. STIM/ORAI proteins mediate store-operated Ca2+ entry (SOCE) and drive fibro-proliferative gene programs during cardiovascular remodeling. SOCE is activated by agonists that induce depletion of ER Ca2+, causing STIM to activate ORAI. Here, we show that the three major classes of LCCBs activate STIM/ORAI-mediated Ca2+ entry in VSMCs. LCCBs act on the STIM N terminus to cause STIM relocalization to junctions and subsequent ORAI activation in a Cav1.2-independent and store depletion-independent manner. LCCB-induced promotion of VSMC remodeling requires STIM1, which is up-regulated in VSMCs from hypertensive rats. Epidemiology showed that LCCBs are more associated with heart failure than other antihypertensive drugs in patients. Our findings unravel a mechanism of LCCBs action on Ca2+ signaling and demonstrate that LCCBs promote vascular remodeling through STIM-mediated activation of ORAI. Our data indicate caution against the use of LCCBs in elderly patients or patients with advanced hypertension and/or onset of cardiovascular remodeling, where levels of STIM and ORAI are elevated.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Hipertensión/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Moléculas de Interacción Estromal/metabolismo , Remodelación Vascular/fisiología , Animales , Antihipertensivos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Insuficiencia Cardíaca , Humanos , Proteínas de la Membrana/genética , Miocitos del Músculo Liso , Proteínas de Neoplasias , Proteína ORAI1/genética , Ratas , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 2/genética
9.
J Biol Chem ; 297(4): 101174, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499925

RESUMEN

Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C-coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release-activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol-mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Sistemas CRISPR-Cas , Canales de Calcio/genética , Retículo Endoplásmico , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos , Factores de Transcripción NFATC/genética , Linfocitos T/metabolismo
10.
Proteins ; 90(9): 1721-1731, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35441395

RESUMEN

Protein structural classification (PSC) is a supervised problem of assigning proteins into pre-defined structural (e.g., CATH or SCOPe) classes based on the proteins' sequence or 3D structural features. We recently proposed PSC approaches that model protein 3D structures as protein structure networks (PSNs) and analyze PSN-based protein features, which performed better than or comparable to state-of-the-art sequence or other 3D structure-based PSC approaches. However, existing PSN-based PSC approaches model the whole 3D structure of a protein as a static (i.e., single-layer) PSN. Because folding of a protein is a dynamic process, where some parts (i.e., sub-structures) of a protein fold before others, modeling the 3D structure of a protein as a PSN that captures the sub-structures might further help improve the existing PSC performance. Here, we propose to model 3D structures of proteins as multi-layer sequential PSNs that approximate 3D sub-structures of proteins, with the hypothesis that this will improve upon the current state-of-the-art PSC approaches that are based on single-layer PSNs (and thus upon the existing state-of-the-art sequence and other 3D structural approaches). Indeed, we confirm this on 72 datasets spanning ~44 000 CATH and SCOPe protein domains.


Asunto(s)
Proteínas , Secuencia de Aminoácidos , Proteínas/química , Alineación de Secuencia
11.
PLoS Genet ; 15(10): e1008453, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609965

RESUMEN

Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Estadios del Ciclo de Vida/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Anopheles/parasitología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mapeo Cromosómico , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Femenino , Frecuencia de los Genes , Sitios Genéticos , Humanos , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Mosquitos Vectores/parasitología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Proteínas Ribosómicas/genética , Selección Genética , Quimera por Trasplante
12.
BMC Biol ; 19(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750380

RESUMEN

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Asunto(s)
Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Control de Insectos , Muscidae/genética , Animales , Reproducción/genética
13.
BMC Genomics ; 22(1): 179, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711916

RESUMEN

BACKGROUND: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. RESULTS: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. CONCLUSIONS: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Asunto(s)
Flujo Génico , Zea mays , Animales , Brasil , Humanos , Kenia , Spodoptera , Zea mays/genética
14.
Bioinformatics ; 36(19): 4876-4884, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-32609328

RESUMEN

MOTIVATION: Most amino acids are encoded by multiple synonymous codons, some of which are used more rarely than others. Analyses of positions of such rare codons in protein sequences revealed that rare codons can impact co-translational protein folding and that positions of some rare codons are evolutionarily conserved. Analyses of their positions in protein 3-dimensional structures, which are richer in biochemical information than sequences alone, might further explain the role of rare codons in protein folding. RESULTS: We model protein structures as networks and use network centrality to measure the structural position of an amino acid. We first validate that amino acids buried within the structural core are network-central, and those on the surface are not. Then, we study potential differences between network centralities and thus structural positions of amino acids encoded by conserved rare, non-conserved rare and commonly used codons. We find that in 84% of proteins, the three codon categories occupy significantly different structural positions. We examine protein groups showing different codon centrality trends, i.e. different relationships between structural positions of the three codon categories. We see several cases of all proteins from our data with some structural or functional property being in the same group. Also, we see a case of all proteins in some group having the same property. Our work shows that codon usage is linked to the final protein structure and thus possibly to co-translational protein folding. AVAILABILITY AND IMPLEMENTATION: https://nd.edu/∼cone/CodonUsage/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Uso de Codones , Pliegue de Proteína , Secuencia de Aminoácidos , Codón/genética , Proteínas/genética
15.
J Surg Res ; 267: 527-535, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34256195

RESUMEN

BACKGROUND: Inflammation of diverticula, which are outpouchings of the colonic bowl wall, causes diverticulitis. Severe cases of diverticulitis require surgical intervention. Through RNA-seq analysis of intestinal tissues, we previously found that the innate immune response was deregulated in surgical diverticulitis patients. In that study, pro-inflammatory and macrophage markers were differentially expressed in the colons of diverticulitis versus control patients. Here we investigate CD163L1+ macrophages and the pro-inflammatory chemokine, CXCL10, in diverticulitis. MATERIALS AND METHODS: We assessed tissue from an uninvolved area adjacent to a region of the sigmoid colon chronically affected by diverticulitis and performed Spearman's correlation on transcripts associated with macrophage signaling. We identified altered CD163L1 and CXCL10 gene expression levels that we confirmed by RT-qPCR analysis on an independent cohort of diverticulitis patients and controls. We used immunofluorescence microscopy to localize CD163L1+ macrophages and CXCL10 levels in intestinal tissue and ELISA to measure CXCL10 levels in patient serum. RESULTS: We found a positive correlation between intestinal CD163L1 and CXCL10 gene expression and an increased number of CD163L1+ macrophages in the sigmoid colons of diverticulitis patients relative to controls (P = 0.036). Macrophages at the apices of colonic crypts expressed the chemokine CXCL10. Correspondingly, these diverticulitis patients also displayed heightened CXCL10 levels in their serum (P = 0.007). CONCLUSIONS: We identified a novel population of CD163L1+CXCL10+ macrophages in the colonic crypts of diverticulitis patients and demonstrated increased expression of serum CXCL10 in these patients. CXCL10 may serve as a prognostic biomarker to aid in clinical decision making for diverticulitis patients.


Asunto(s)
Quimiocina CXCL10 , Diverticulitis , Macrófagos , Glicoproteínas de Membrana , Receptores Depuradores , Quimiocina CXCL10/sangre , Quimiocina CXCL10/inmunología , Colon/inmunología , Colon/patología , Colon Sigmoide/patología , Colon Sigmoide/cirugía , Diverticulitis/sangre , Diverticulitis/inmunología , Diverticulitis/patología , Diverticulitis/cirugía , Humanos , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Macrófagos/patología , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/inmunología , Receptores Depuradores/sangre , Receptores Depuradores/inmunología
16.
Nature ; 520(7549): 683-7, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25874676

RESUMEN

Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Resistencia a Medicamentos/genética , Estudio de Asociación del Genoma Completo , Modelos Moleculares , Mutación , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
17.
Hereditas ; 158(1): 7, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509290

RESUMEN

BACKGROUND: The Aedes aegypti mosquito is a threat to human health across the globe. The A. aegypti genome was recently re-sequenced and re-assembled. Due to a combination of long-read PacBio and Hi-C sequencing, the AaegL5 assembly is chromosome complete and significantly improves the assembly in key areas such as the M/m sex-determining locus. Release of the updated genome assembly has precipitated the need to reprocess historical functional genomic data sets, including cis-regulatory element (CRE) maps that had previously been generated for A. aegypti. RESULTS: We re-processed and re-analyzed the A. aegypti whole embryo FAIRE seq data to create an updated embryonic CRE map for the AaegL5 genome. We validated that the new CRE map recapitulates key features of the original AaegL3 CRE map. Further, we built on the improved assembly in the M/m locus to analyze overlaps of open chromatin regions with genes. To support the validation, we created a new method (PeakMatcher) for matching peaks from the same experimental data set across genome assemblies. CONCLUSION: Use of PeakMatcher software, which is available publicly under an open-source license, facilitated the release of an updated and validated CRE map, which is available through the NIH GEO. These findings demonstrate that PeakMatcher software will be a useful resource for validation and transferring of previous annotations to updated genome assemblies.


Asunto(s)
Aedes/genética , Elementos Reguladores de la Transcripción , Aedes/embriología , Animales , Genoma de los Insectos , Anotación de Secuencia Molecular
18.
Proc Natl Acad Sci U S A ; 115(10): E2284-E2291, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463695

RESUMEN

Climate-mediated changes in hybridization will dramatically alter the genetic diversity, adaptive capacity, and evolutionary trajectory of interbreeding species. Our ability to predict the consequences of such changes will be key to future conservation and management decisions. Here we tested through simulations how recent warming (over the course of a 32-y period) is affecting the geographic extent of a climate-mediated developmental threshold implicated in maintaining a butterfly hybrid zone (Papilio glaucus and Papilio canadensis; Lepidoptera: Papilionidae). These simulations predict a 68-km shift of this hybrid zone. To empirically test this prediction, we assessed genetic and phenotypic changes using contemporary and museum collections and document a 40-km northward shift of this hybrid zone. Interactions between the two species appear relatively unchanged during hybrid zone movement. We found no change in the frequency of hybridization, and regions of the genome that experience little to no introgression moved largely in concert with the shifting hybrid zone. Model predictions based on climate scenarios predict this hybrid zone will continue to move northward, but with substantial spatial heterogeneity in the velocity (55-144 km/1 °C), shape, and contiguity of movement. Our findings suggest that the presence of nonclimatic barriers (e.g., genetic incompatibilities) and/or nonlinear responses to climatic gradients may preserve species boundaries as the species shift. Further, we show that variation in the geography of hybrid zone movement could result in evolutionary responses that differ for geographically distinct populations spanning hybrid zones, and thus have implications for the conservation and management of genetic diversity.


Asunto(s)
Mariposas Diurnas/genética , Cambio Climático , Ecosistema , Animales , Cruzamiento , Mariposas Diurnas/fisiología , Femenino , Variación Genética , Genómica , Geografía , Hibridación Genética , Masculino , Modelos Biológicos , Museos/estadística & datos numéricos
19.
BMC Biol ; 18(1): 1, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898513

RESUMEN

BACKGROUND: New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from 'finished'. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. RESULTS: We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. CONCLUSIONS: Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.


Asunto(s)
Anopheles/genética , Evolución Biológica , Cromosomas , Técnicas Genéticas/instrumentación , Genómica/métodos , Sintenía , Animales , Mapeo Cromosómico
20.
J Biol Chem ; 294(16): 6318-6332, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824535

RESUMEN

Store-operated Ca2+ entry (SOCE) is a ubiquitous pathway for Ca2+ influx across the plasma membrane (PM). SOCE is mediated by the endoplasmic reticulum (ER)-associated Ca2+-sensing proteins stromal interaction molecule 1 (STIM1) and STIM2, which transition into an active conformation in response to ER Ca2+ store depletion, thereby interacting with and gating PM-associated ORAI1 channels. Although structurally homologous, STIM1 and STIM2 generate distinct Ca2+ signatures in response to varying strengths of agonist stimulation. The physiological functions of these Ca2+ signatures, particularly under native conditions, remain unclear. To investigate the structural properties distinguishing STIM1 and STIM2 activation of ORAI1 channels under native conditions, here we used CRISPR/Cas9 to generate STIM1-/-, STIM2-/-, and STIM1/2-/- knockouts in HEK293 and colorectal HCT116 cells. We show that depending on cell type, STIM2 can significantly sustain SOCE in response to maximal store depletion. Utilizing the SOCE modifier 2-aminoethoxydiphenyl borate (2-APB), we demonstrate that 2-APB-activated store-independent Ca2+ entry is mediated exclusively by endogenous STIM2. Using variants that either stabilize or disrupt intramolecular interactions of STIM C termini, we show that the increased flexibility of the STIM2 C terminus contributes to its selective store-independent activation by 2-APB. However, STIM1 variants with enhanced flexibility in the C terminus failed to support its store-independent activation. STIM1/STIM2 chimeric constructs indicated that coordination between N-terminal sensitivity and C-terminal flexibility is required for specific store-independent STIM2 activation. Our results clarify the structural determinants underlying activation of specific STIM isoforms, insights that are potentially useful for isoform-selective drug targeting.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Compuestos de Boro/química , Compuestos de Boro/farmacología , Calcio/química , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/química , Molécula de Interacción Estromal 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA