Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(21): 217004, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33275021

RESUMEN

Recent observations [A. Pustogow et al., Nature (London) 574, 72 (2019).NATUAS0028-083610.1038/s41586-019-1596-2] of a drop of the ^{17}O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr_{2}RuO_{4} challenged the popular picture of a chiral odd-parity paired state in this compound. Here we use polarized neutron scattering (PNS) to show that there is a 34±6% drop in the magnetic susceptibility at the Ru site below the superconducting transition temperature. We measure at lower fields H∼1/3H_{c2} than a previous PNS study allowing the suppression to be observed. The PNS measurements show a smaller susceptibility suppression than NMR measurements performed at similar field and temperature. Our results rule out the chiral odd-parity d=z[over ^](k_{x}±ik_{y}) state and are consistent with several recent proposals for the order parameter including even-parity B_{1g} and odd-parity helical states.

2.
Phys Rev Lett ; 120(6): 067203, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481234

RESUMEN

The mineral linarite, PbCuSO_{4}(OH)_{2}, is a spin-1/2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite, its strong dependence of the magnetic field direction, and the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA