Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 263(3): 315-327, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38721910

RESUMEN

Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Hemólisis , Túbulos Renales Proximales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones Noqueados , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Hemoglobinas/metabolismo , Ratones , Cilastatina/farmacología , Modelos Animales de Enfermedad , Fenilhidrazinas , Ratones Endogámicos C57BL , Masculino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , alfa-Globulinas/metabolismo , Humanos
2.
J Immunol Methods ; 534: 113763, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374646

RESUMEN

Megalin, a type I transmembrane protein, serves as a multi-ligand endocytic receptor in the apical membrane of proximal tubules. Its ectodomain and full-length forms are excreted into human urine, with the former being more abundant. We previously developed two types of sandwich enzyme-linked immunosorbent assays (ELISAs) utilizing monoclonal antibodies that target the amino-terminal ligand-binding domain-I and the carboxyl-terminal cytoplasmic region of human megalin, respectively. The former, termed "A-megalin" ELISA, primarily identifies ectodomains of megalin, whereas the latter, "C-megalin" ELISA, specifically recognizes full-length megalin originating from urinary extracellular vesicles. This study developed novel sandwich ELISAs to assess mouse urinary A-megalin and C-megalin, thereby facilitating studies involving these biomarkers in mouse disease models. Immunoblotting and immunohistochemistry of monoclonal antibodies against human megalin were performed to assess their compatibility with mouse megalin in novel sandwich ELISAs, which were constructed and validated using human assay protocols. Immunoblot analysis of megalin in urinary extracellular vesicles and supernatant was performed to investigate the ratio of ectodomain to full-length forms in mouse urine. Stable measurements having a precision and accuracy within 15 % were achieved in the measurement of quality control samples. A-megalin and C-megalin were detectable in the urine of C57BL/6 mice, whereas most urine samples from kidney-specific conditional megalin-knockout mice were below detection limits. Ectodomain forms of megalin were at least approximately 70 times more abundant than the full-length form, even in mouse urine. In conclusion, we successfully developed sandwich ELISAs for assessing mouse urinary A-megalin and C-megalin to evaluate primarily ectodomain and full-length forms of megalin, respectively.

4.
J Nat Prod ; 70(3): 423-4, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17378531

RESUMEN

A new cytotoxic bis-indole alkaloid, hyrtinadine A (1), with a pyrimidine moiety has been isolated from an Okinawan marine sponge Hyrtios sp., and the structure was elucidated on the basis of spectroscopic data.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Poríferos/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Concentración 50 Inhibidora , Células KB , Biología Marina , Estructura Molecular
5.
J Nat Prod ; 70(10): 1676-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17922551

RESUMEN

Two 26-membered macrolides, amphidinolides B6 ( 2) and B7 ( 1), have been isolated from a marine symbiotic dinoflagellate Amphidinium sp., and the structures were elucidated on the basis of detailed analyses of 2D NMR data. The relative and absolute configurations for 1 and 2 were assigned by comparison of NMR data and CD data with those of known amphidinolides.


Asunto(s)
Dinoflagelados/química , Macrólidos/aislamiento & purificación , Macrólidos/farmacología , Animales , Dicroismo Circular , Macrólidos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
6.
Org Biomol Chem ; 3(15): 2713-22, 2005 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16032349

RESUMEN

To obtain insight into how the cyclization pathway is controlled, the mechanism of diterpene synthase reactions (the putative phomactatriene synthase and taxadiene synthases) involving the same intermediate was investigated in detail. The mechanism of the initial transformation of GGDP to verticillen-12-yl cation (A+) was proposed based on the labelling pattern of phomactatriene (9a) obtained in the feeding experiments with 13C-labelled acetates. To obtain information on the reaction pathway of A+ to 9a and taxadiene, reactions of verticillol with various acids were conducted. Structural determination of products allowed us to propose a reaction pathway via cations A+, D+, E+, F+ and G+. Identification of hydrocarbons in mycelial extracts of phomactin-producing fungus supported the proposed reaction mechanism. Based on the results of ab initio calculations for highly flexible cation intermediates, a mechanism is proposed.


Asunto(s)
Alquenos/síntesis química , Diterpenos/síntesis química , Ligasas/metabolismo , Alquenos/química , Ciclización , Diterpenos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA