Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(3): 456-68, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485454

RESUMEN

The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.


Asunto(s)
Infecciones Bacterianas/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Infecciones Urinarias/inmunología , Animales , Antígenos Ly/metabolismo , Quimiocina CXCL2/inmunología , Femenino , Enfermedades del Sistema Inmune , Cinética , Trastornos Leucocíticos , Macrófagos/citología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Neutrófilos/citología , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/inmunología
2.
Kidney Int ; 100(2): 349-363, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930412

RESUMEN

Enterohaemorrhagic E. coli cause major epidemics worldwide with significant organ damage and very high percentages of death. Due to the ability of enterohaemorrhagic E. coli to produce shiga toxin these bacteria damage the kidney leading to the hemolytic uremic syndrome. A therapy against this serious kidney disease has not been developed yet and the impact and mechanism of leukocyte activation and recruitment are unclear. Tissue-resident macrophages represent the main leukocyte population in the healthy kidney, but the role of this important cell population in shiga toxin-producing E. coli-hemolytic uremic syndrome is incompletely understood. Using state of the art microscopy and mass spectrometry imaging, our preclinical study demonstrated a phenotypic and functional switch of tissue-resident macrophages after disease induction in mice. Kidney macrophages produced the inflammatory molecule TNFα and depletion of tissue-resident macrophages via the CSF1 receptor abolished TNFα levels in the kidney and significantly diminished disease severity. Furthermore, macrophage depletion did not only attenuate endothelial damage and thrombocytopenia, but also activation of thrombocytes and neutrophils. Moreover, we observed that neutrophils infiltrated the kidney cortex and depletion of macrophages significantly reduced the recruitment of neutrophils and expression of the neutrophil-attracting chemokines CXCL1 and CXCL2. Intravital microscopy revealed that inhibition of CXCR2, the receptor for CXCL1 and CXCL2, significantly reduced the infiltration of neutrophils and reduced kidney injury. Thus, our study shows activation of tissue-resident macrophages during shiga toxin-producing E. coli-hemolytic uremic syndrome leading to the production of disease-promoting TNFα and CXCR2-dependent recruitment of neutrophils.


Asunto(s)
Síndrome Hemolítico-Urémico , Toxina Shiga , Animales , Escherichia coli , Riñón , Macrófagos , Ratones , Infiltración Neutrófila
3.
Eur J Immunol ; 48(6): 990-1000, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29446073

RESUMEN

The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1high monocyte infiltration into the kidney. Indeed, the number of Gr1high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1high monocytes. Lack of Gr1high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Síndrome Hemolítico-Urémico/inmunología , Riñón/patología , Monocitos/inmunología , Receptores CCR2/metabolismo , Animales , Antígenos Ly/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CCR2/genética , Receptores CXCR3/genética , Toxina Shiga II/administración & dosificación
4.
Nat Methods ; 12(5): 445-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25775045

RESUMEN

Neutrophil granulocyte biology is a central issue of immunological research, but the lack of animal models that allow for neutrophil-selective genetic manipulation has delayed progress. By modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato, we generated a mouse model termed Catchup that exhibits strong neutrophil specificity. Transgene activity was found only in very few eosinophils and basophils and was undetectable in bone marrow precursors, including granulomonocytic progenitors (GMPs). Cre-mediated reporter-gene activation allowed for intravital two-photon microscopy of neutrophils without adoptive transfer. Homozygous animals were Ly6G deficient but showed normal leukocyte cellularity in all measured organs. Ly6G-deficient neutrophils were functionally normal in vitro and in multiple models of sterile or infectious inflammation in vivo. However, Cre-mediated deletion of FcγRIV in neutrophils reduced the cells' recruitment to immune-complex-mediated peritonitis, suggesting a cell-intrinsic role for activating Fc receptors in neutrophil trafficking.


Asunto(s)
Neutrófilos/citología , Neutrófilos/fisiología , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Muerte Celular , Movimiento Celular , Femenino , Regulación de la Expresión Génica/fisiología , Técnicas de Transferencia de Gen , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Peritonitis/patología , Especies Reactivas de Oxígeno , Transgenes/genética
5.
J Am Soc Nephrol ; 28(2): 452-459, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27487796

RESUMEN

The total number of glomeruli is a fundamental parameter of kidney function but very difficult to determine using standard methodology. Here, we counted all individual glomeruli in murine kidneys and sized the capillary tufts by combining in vivo fluorescence labeling of endothelial cells, a novel tissue-clearing technique, lightsheet microscopy, and automated registration by image analysis. Total hands-on time per organ was <1 hour, and automated counting/sizing was finished in <3 hours. We also investigated the novel use of ethyl-3-phenylprop-2-enoate (ethyl cinnamate) as a nontoxic solvent-based clearing reagent that can be handled without specific safety measures. Ethyl cinnamate rapidly cleared all tested organs, including calcified bone, but the fluorescence of proteins and immunohistochemical labels was maintained over weeks. Using ethyl cinnamate-cleared kidneys, we also quantified the average creatinine clearance rate per glomerulus. This parameter decreased in the first week of experimental nephrotoxic nephritis, whereas reduction in glomerular numbers occurred much later. Our approach delivers fundamental parameters of renal function, and because of its ease of use and speed, it is suitable for high-throughput analysis and could greatly facilitate studies of the effect of kidney diseases on whole-organ physiology.


Asunto(s)
Capilares/patología , Enfermedades Renales/patología , Glomérulos Renales/patología , Riñón/irrigación sanguínea , Riñón/patología , Animales , Femenino , Ratones , Microscopía , Tamaño de los Órganos
6.
J Immunol ; 194(4): 1628-38, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595779

RESUMEN

A dense network of macrophages and dendritic cells (DC) expressing the chemokine receptor CX3CR1 populates most tissues. We recently reported that CX3CR1 regulates the abundance of CD11c(+) DC in the kidney and thereby promotes renal inflammation in glomerulonephritis. Given that chronic inflammation usually causes fibrosis, we hypothesized that CX3CR1 deficiency should attenuate renal fibrosis. However, when we tested this hypothesis using the DC-independent murine fibrosis model of unilateral ureteral obstruction, kidney fibrosis was unexpectedly more severe, despite less intrarenal inflammation. Two-photon imaging and flow cytometry revealed in kidneys of CX3CR1-deficient mice more motile Ly6C/Gr-1(+) macrophages. Flow cytometry verified that renal macrophages were more abundant in the absence of CX3CR1 and produced more of the key profibrotic mediator, TGF-ß. Macrophages accumulated because of higher intrarenal proliferation, despite reduced monocyte recruitment and higher signs of apoptosis within the kidney. These findings support the theory that tissue macrophage numbers are regulated through local proliferation and identify CX3CR1 as a regulator of such proliferation. Thus, CX3CR1 inhibition should be avoided in DC-independent inflammatory diseases because it may promote fibrosis.


Asunto(s)
Proliferación Celular , Riñón/inmunología , Riñón/patología , Macrófagos/patología , Receptores de Quimiocina/inmunología , Animales , Receptor 1 de Quimiocinas CX3C , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Citometría de Flujo , Inmunohistoquímica , Riñón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Quimiocina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Am Soc Nephrol ; 27(11): 3368-3382, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27036736

RESUMEN

Kidney dendritic cells (DCs) regulate nephritogenic T cell responses. Most kidney DCs belong to the CD11b+ subset and promote crescentic GN (cGN). The function of the CD103+ subset, which represents <5% of kidney DCs, is poorly understood. We studied the role of CD103+ DCs in cGN using several lines of genetically modified mice that allowed us to reduce the number of these cells. In all lines, we detected a reduction of FoxP3+ intrarenal regulatory T cells (Tregs), which protect against cGN. Mice lacking the transcription factor Batf3 had a more profound reduction of CD103+ DCs and Tregs than did the other lines used, and showed the most profound aggravation of cGN. The conditional reduction of CD103+ DC numbers by 50% in Langerin-DTR mice halved Treg numbers, which did not suffice to significantly aggravate cGN. Mice lacking the cytokine Flt3L had fewer CD103+ DCs and Tregs than Langerin-DTR mice but exhibited milder cGN than did Batf3-/- mice presumably because proinflammatory CD11b+ DCs were somewhat depleted as well. Conversely, Flt3L supplementation increased the number of CD103+ DCs and Tregs, but also of proinflammatory CD11b+ DCs. On antibody-mediated removal of CD11b+ DCs, Flt3L supplementation ameliorated cGN. Mechanistically, CD103+ DCs caused cocultured T cells to differentiate into Tregs and produced the chemokine CCL20, which is known to attract Tregs into the kidney. Our findings show that CD103+ DCs foster intrarenal FoxP3+ Treg accumulation, thereby antagonizing proinflammatory CD11b+ DCs. Thus, increasing CD103+ DC numbers or functionality might be advantageous in cGN.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Glomerulonefritis/inmunología , Cadenas alfa de Integrinas/inmunología , Interleucina-10/inmunología , Riñón/citología , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Endogámicos C57BL
8.
Nat Methods ; 9(4): 385-90, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22367054

RESUMEN

Transgenic mice expressing the diphtheria toxin receptor (DTR) in specific cell types are key tools for functional studies in several biological systems. B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J (CD11c.DTR) and B6.Cg-Tg(Itgax-DTR/OVA/EGFP)1Gjh/Crl (CD11c.DOG) mice express the DTR in CD11c(+) cells, allowing conditional depletion of dendritic cells. We report that dendritic-cell depletion in these models caused polymorphonuclear neutrophil (PMN) release from the bone marrow, which caused chemokine-dependent neutrophilia after 6-24 h and increased bacterial clearance in a mouse pyelonephritis model. We present a transgenic mouse line, B6.Cg-Tg(Itgax-EGFP-CRE-DTR-LUC)2Gjh/Crl (CD11c.LuciDTR), which is unaffected by early neutrophilia. However, CD11c.LuciDTR and CD11c.DTR mice showed late neutrophilia 72 h after dendritic cell depletion, which was independent of PMN release and possibly resulted from increased granulopoiesis. Thus, the time point of dendritic cell depletion and the choice of DTR transgenic mouse line must be considered in experimental settings where neutrophils may be involved.


Asunto(s)
Antígeno CD11c/inmunología , Neutrófilos/inmunología , Animales , Antígeno CD11c/genética , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Células Dendríticas/patología , Toxina Diftérica/farmacología , Modelos Animales de Enfermedad , Femenino , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Inmunológicos , Neutrófilos/citología , Pielonefritis/inmunología , Pielonefritis/microbiología , Pielonefritis/patología , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/fisiología
9.
J Immunol ; 190(2): 703-11, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23241882

RESUMEN

The cytokine IL-6 plays a protective role in immune responses against bacterial infections. However, the mechanisms of IL-6-mediated protection are only partially understood. IL-6 can signal via the IL-6R complex composed of membrane-bound IL-6Rα (mIL-6Rα) and gp130. Owing to the restricted expression of mIL-6Rα, classical IL-6 signaling occurs only in a limited number of cells such as hepatocytes and certain leukocyte subsets. IL-6 also interacts with soluble IL-6Rα proteins and these IL-6/soluble IL-6Rα complexes can subsequently bind to membrane-bound gp130 proteins and induce signaling. Because gp130 is ubiquitously expressed, this IL-6 trans-signaling substantially increases the spectrum of cells responding to IL-6. In this study, we analyze the role of classical IL-6 signaling and IL-6 trans-signaling in the innate immune response of mice against Listeria monocytogenes infection. We demonstrate that L. monocytogenes infection causes profound systemic IL-6 production and rapid loss of IL-6Rα surface expression on neutrophils, inflammatory monocytes, and different lymphocyte subsets. IL-6-deficient mice or mice treated with neutralizing anti-IL-6 mAb displayed impaired control of L. monocytogenes infection accompanied by alterations in the expression of inflammatory cytokines and chemokines, as well as in the recruitment of inflammatory cells. In contrast, restricted blockade of IL-6 trans-signaling by application or transgenic expression of a soluble gp130 protein did not restrain the control of infection. In summary, our results demonstrate that IL-6Rα surface expression is highly dynamic during the innate response against L. monocytogenes and that the protective IL-6 function is dependent on classical IL-6 signaling via mIL-6Rα.


Asunto(s)
Inmunidad Innata , Interleucina-6/metabolismo , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/metabolismo , Transducción de Señal , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Expresión Génica , Interleucina-6/genética , Interleucina-6/inmunología , Listeriosis/genética , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
10.
Infect Dis Clin North Am ; 38(2): 229-240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575493

RESUMEN

Urinary tract infection (UTI) is a very common disease that is accompanied by various complications in the affected person. UTI triggers diverse inflammatory reactions locally in the infected urinary bladder and kidney, causing tissue destruction and organ failure. Moreover, systemic responses in the entire body carry the risk of urosepsis with far-reaching consequences. Understanding the cell-, organ-, and systemic mechanisms in UTI are crucial for prevention, early intervention, and current therapeutic approaches. This review summarizes the scientific advances over the last 10 years concerning pathogenesis, prevention, rapid diagnosis, and new treatment approaches. We also highlight the impact of the immune system and potential new therapies to reduce progressive and recurrent UTI.


Asunto(s)
Infecciones Urinarias , Humanos , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/prevención & control , Antibacterianos/uso terapéutico
11.
Am J Pathol ; 180(1): 91-103, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22079432

RESUMEN

Unilateral ureteral obstruction (UUO) is a well-characterized murine model of renal inflammation leading to fibrosis. Renal dendritic cells (DCs) constitute a significant portion of kidney leukocytes and may participate in local inflammation and have critical roles in antigen presentation. The heterogeneity in renal DC populations and surface marker overlap with monocytes/macrophages has made studying renal DCs difficult. These studies used CD11c-promoter driven reporter/depletion mice to study DCs in vivo. Studying early local inflammatory events (day 3 of UUO), in vivo multiphoton imaging of the intact kidney of CD11c reporter mice revealed more dendrite extensions and increased activity of renal DCs in real time. Phenotypic analysis suggested resident DC maturation in obstructed kidneys with increased CD11b and less F4/80 expressed. CD11b(hi) Gr-1(+) inflammatory DCs were also present in obstructed kidneys. T-cell receptor transgenic mice revealed enhanced antigen-presenting capacity of renal DCs after UUO, with increased antigen-specific T-cell proliferation in vivo and ex vivo. However, conditional DC ablation at days 0, 2, or 4 did not attenuate fibrosis or apoptosis 7 days after UUO, and depletion at 7 days did not alter outcomes at day 14. Therefore, after UUO, renal DCs exhibit inflammatory morphological and functional characteristics and are more effective antigen-presenting cells, but they do not directly contribute to tubulointerstitial damage and fibrosis.


Asunto(s)
Células Dendríticas/fisiología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Uréter/patología , Obstrucción Ureteral/patología , Animales , Apoptosis/inmunología , Antígeno CD11c/metabolismo , Citocinas/biosíntesis , Células Dendríticas/metabolismo , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nefritis/patología , Fenotipo , Obstrucción Ureteral/inmunología
12.
J Am Soc Nephrol ; 23(4): 629-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22282596

RESUMEN

Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman's space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman's capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents.


Asunto(s)
Cápsula Glomerular/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/cirugía , Glomérulos Renales/patología , Glomérulos Renales/cirugía , Podocitos/ultraestructura , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Doxiciclina , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Ratones Transgénicos , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/inducido químicamente , Distribución Aleatoria
13.
Front Cell Dev Biol ; 11: 866847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091981

RESUMEN

GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.

14.
Front Immunol ; 14: 1227191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790937

RESUMEN

Introduction: Streptococcus pneumoniae is one of the main causes of community-acquired infections in the lung alveoli in children and the elderly. Alveolar macrophages (AM) patrol alveoli in homeostasis and under infectious conditions. However, the molecular adaptations of AM upon infections with Streptococcus pneumoniae are incompletely resolved. Methods: We used a comparative transcriptomic and proteomic approach to provide novel insights into the cellular mechanism that changes the molecular signature of AM during lung infections. Using a tandem mass spectrometry approach to murine cell-sorted AM, we revealed significant proteomic changes upon lung infection with Streptococcus pneumoniae. Results: AM showed a strong neutrophil-associated proteomic signature, such as expression of CD11b, MPO, neutrophil gelatinases, and elastases, which was associated with phagocytosis of recruited neutrophils. Transcriptomic analysis indicated intrinsic expression of CD11b by AM. Moreover, comparative transcriptomic and proteomic profiling identified CD11b as the central molecular hub in AM, which influenced neutrophil recruitment, activation, and migration. Discussion: In conclusion, our study provides novel insights into the intrinsic molecular adaptations of AM upon lung infection with Streptococcus pneumoniae and reveals profound alterations critical for effective antimicrobial immunity.


Asunto(s)
Antígeno CD11b , Neumonía Neumocócica , Animales , Ratones , Integrinas , Pulmón , Macrófagos Alveolares , Proteómica , Streptococcus pneumoniae , Transcriptoma
15.
Cell Rep Methods ; 3(3): 100436, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056368

RESUMEN

Light-sheet fluorescence microscopy (LSFM) can produce high-resolution tomograms of tissue vasculature with high accuracy. However, data processing and analysis is laborious due to the size of the datasets. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ∼100 times faster than other existing vessel analysis tools, requires no user interaction, and integrates batch processing and parallelization. Employing an innovative dual Frangi filter approach, we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.


Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Animales , Ratones , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Encéfalo/diagnóstico por imagen
16.
Nat Cancer ; 4(9): 1292-1308, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525015

RESUMEN

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


Asunto(s)
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapéutico , Antígeno CTLA-4/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética
17.
J Am Soc Nephrol ; 22(8): 1435-41, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21757770

RESUMEN

Dendritic cells (DCs) are the most abundant immune cells in the kidney and form an intricate network in the tubulointerstitium, suggesting that they may play an important role in interstitial infections such as pyelonephritis. Here, we optimized a murine pyelonephritis model by instilling uropathogenic Escherichia coli two times at a 3-hour interval, which produced an infection rate of 84%. By 3 hours after the second instillation, resident kidney DCs began secreting the chemokine CXCL2, which recruits neutrophilic granulocytes. During the time studied, DCs remained responsible for most of the CXCL2 production. Neutrophils began infiltrating the kidney 3 hours after the second instillation and phagocytozed bacteria. Macrophages followed 3 hours later and contributed much less to both CXCL2 production and bacterial phagocytosis. To investigate whether DCs recruit neutrophils into the kidney for antibacterial defense, we used CD11c.DTR mice allowing conditional depletion of CD11c(+) dendritic cells. The absence of CD11c(+) DCs markedly delayed neutrophil recruitment and bacterial clearance. In conclusion, these findings suggest that the tubulointerstitial dendritic cell network serves an innate immune sentinel function against bacterial pyelonephritis.


Asunto(s)
Células Dendríticas/citología , Riñón/patología , Pielonefritis/inmunología , Pielonefritis/microbiología , Animales , Antígeno CD11c/biosíntesis , Células Dendríticas/inmunología , Escherichia coli/metabolismo , Humanos , Inmunidad Innata , Incidencia , Riñón/citología , Riñón/microbiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagocitos/citología , Sistema Urinario/patología , Factores de Virulencia
18.
J Am Soc Nephrol ; 22(2): 306-16, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21164025

RESUMEN

It is unclear why kidney dendritic cells attenuate some models of kidney disease but aggravate others. Kidney dendritic cells ameliorate the early phase of nonaccelerated nephrotoxic nephritis, a murine model of crescentic glomerulonephritis, but their effect on the later phase is unknown. Here, we report that kidney dendritic cells at later stages of nephrotoxic nephritis expressed higher levels of costimulatory molecules but lower levels of the cosuppressor molecule ICOS-L and started production of IL-12/23p40 and TNF-α. Furthermore, we noted that kidney dendritic cells captured more filterable antigen in proteinuric mice at late time points of nephrotoxic nephritis and started to capture molecules that were too large for filtration by a healthy kidney. They presented filtered antigen to Th cells, which responded by producing the proinflammatory cytokines IL-2, IFN-γ, TNF-α, IL-6, and IL-17. Notably, production of the suppressive cytokine IL-10 further increased in late nephrotoxic nephritis. Depletion of kidney dendritic cells at a late stage attenuated nephrotoxic nephritis, in contrast to the exacerbation observed with depletion at an early stage, indicating that their acquired proinflammatory phenotype adversely affected disease. These findings indicate that the intrarenal inflammatory microenvironment determines how kidney dendritic cells affect nephritis. In addition, proteinuria may harm the kidney by providing dendritic cells with more antigens to stimulate potentially pathogenic Th cells.


Asunto(s)
Células Dendríticas/fisiología , Glomerulonefritis/inmunología , Riñón/inmunología , Proteinuria/inmunología , Animales , Antígenos/inmunología , Glomerulonefritis/etiología , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th17/inmunología
19.
Eur J Endocrinol ; 186(5): R65-R77, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35175936

RESUMEN

Over the past few years, growing evidence suggests direct crosstalk between thyroid hormones (THs) and the immune system. Components of the immune system were proposed to interfere with the central regulation of systemic TH levels. Conversely, THs regulate innate and adaptive immune responses as immune cells are direct target cells of THs. Accordingly, they express different components of local TH action, such as TH transporters or receptors, but our picture of the interplay between THs and the immune system is still incomplete. This review provides a critical overview of current knowledge regarding the interaction of THs and the immune system with the main focus on local TH action within major innate and adaptive immune cell subsets. Thereby, this review aims to highlight open issues which might help to infer the clinical relevance of THs in host defence in the context of different types of diseases such as infection, ischemic organ injury or cancer.


Asunto(s)
Proteínas Portadoras , Hormonas Tiroideas , Humanos , Sistema Inmunológico/metabolismo , Hormonas Tiroideas/metabolismo
20.
Nat Commun ; 13(1): 2022, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440634

RESUMEN

Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation.


Asunto(s)
Estructuras Linfoides Terciarias , Animales , Células Endoteliales , Endotelio Vascular , Inflamación , Ratones , Receptores Notch/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA