Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 184(17): 4579-4592.e24, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34297925

RESUMEN

Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Aminoacil-ARNt Sintetasas/metabolismo , Antituberculosos/farmacología , Teorema de Bayes , Evolución Biológica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , ARN Guía de Kinetoplastida/genética
2.
J Biol Chem ; 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397709

RESUMEN

Mycobacteria tuberculosis (Mtb) remains the deadliest pathogenic bacteria worldwide. The search for new antibiotics to treat drug-sensitive as well as drug-resistant tuberculosis has become a priority. The essential enzyme phenylalanyl-tRNA synthetase (PheRS) is an antibacterial drug target because of the large differences between bacterial and human PheRS counterparts. In a high-throughput screening of 2148 bioactive compounds, PF-3845, which is a known inhibitor of human fatty acid amide hydrolase (FAAH), was identified inhibiting Mtb PheRS at Ki ~0.73 ± 0.06 µM. The inhibition mechanism was studied with enzyme kinetics, protein structural modelling and crystallography, in comparison to a PheRS inhibitor of the noted phenyl-thiazolylurea-sulfonamide class. The 2.3-Å crystal structure of Mtb PheRS in complex with PF-3845 revealed its novel binding mode, in which a trifluoromethyl-pyridinylphenyl group occupies the Phe pocket while a piperidine-piperazine urea group binds into the ATP pocket through an interaction network enforced by a sulfate ion. It represents the first non-nucleoside bi-substrate competitive inhibitor of bacterial PheRS. PF-3845 inhibits the in vitro growth of Mtb H37Rv at ~24 µM, and the potency of PF-3845 increased against Mtb pheS-FDAS, suggesting on target activity in mycobacterial whole cells.  PF-3845 does not inhibit human cytoplasmic or mitochondrial PheRS in biochemical assay, which can be explained from the crystal structures. Further medicinal chemistry efforts focused on the piperidine-piperazine urea moiety may result in the identification of a selective antibacterial lead compound.

3.
J Biol Chem ; 296: 100257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837735

RESUMEN

Mycobacterium tuberculosis (Mtb) remains the deadliest pathogenic bacteria worldwide. The search for new antibiotics to treat drug-sensitive as well as drug-resistant tuberculosis has become a priority. The essential enzyme phenylalanyl-tRNA synthetase (PheRS) is an antibacterial drug target because of the large differences between bacterial and human PheRS counterparts. In a high-throughput screening of 2148 bioactive compounds, PF-3845, which is a known inhibitor of human fatty acid amide hydrolase, was identified inhibiting Mtb PheRS at Ki ∼ 0.73 ± 0.06 µM. The inhibition mechanism was studied with enzyme kinetics, protein structural modeling, and crystallography, in comparison to a PheRS inhibitor of the noted phenyl-thiazolylurea-sulfonamide class. The 2.3-Å crystal structure of Mtb PheRS in complex with PF-3845 revealed its novel binding mode, in which a trifluoromethyl-pyridinylphenyl group occupies the phenylalanine pocket, whereas a piperidine-piperazine urea group binds into the ATP pocket through an interaction network enforced by a sulfate ion. It represents the first non-nucleoside bisubstrate competitive inhibitor of bacterial PheRS. PF-3845 inhibits the in vitro growth of Mtb H37Rv at ∼24 µM, and the potency of PF-3845 increased against an engineered strain Mtb pheS-FDAS, suggesting on target activity in mycobacterial whole cells. PF-3845 does not inhibit human cytoplasmic or mitochondrial PheRS in biochemical assay, which can be explained from the crystal structures. Further medicinal chemistry efforts focused on the piperidine-piperazine urea moiety may result in the identification of a selective antibacterial lead compound.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Fenilalanina-ARNt Ligasa/ultraestructura , Conformación Proteica , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Secuencia de Aminoácidos/genética , Antibacterianos/química , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Cinética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Piperidinas/química , Piperidinas/farmacología , Piridinas/química , Piridinas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/enzimología , Tuberculosis Resistente a Múltiples Medicamentos/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-28893793

RESUMEN

Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Pared Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/efectos de los fármacos , Serina Proteasas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Etambutol/farmacología , Galactanos/biosíntesis , Perfilación de la Expresión Génica , Humanos , Bombas Iónicas/deficiencia , Bombas Iónicas/genética , Isoniazida/farmacología , Ligasas/genética , Ligasas/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meropenem , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/biosíntesis , Rifampin/farmacología , Serina Proteasas/metabolismo , Tienamicinas/farmacología , Vancomicina/farmacología
5.
ACS Infect Dis ; 10(5): 1561-1575, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38577994

RESUMEN

DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.


Asunto(s)
Antituberculosos , Inhibidores Enzimáticos , Mycobacterium tuberculosis , Sintasas Poliquetidas , Bibliotecas de Moléculas Pequeñas , Tioléster Hidrolasas , Animales , Humanos , Ratones , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
6.
J Org Chem ; 78(15): 7470-81, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23805993

RESUMEN

MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common ß-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a ß-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a ß-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Ligasas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Sideróforos/biosíntesis , Antituberculosos/síntesis química , Antituberculosos/química , Benzoxazinas/síntesis química , Benzoxazinas/química , Benzoxazinas/farmacología , Biocatálisis , Cromonas/síntesis química , Cromonas/química , Cromonas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ligasas/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Nucleósidos/síntesis química , Nucleósidos/química , Nucleósidos/farmacología , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/farmacología , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacología
7.
Tuberculosis (Edinb) ; 140: 102346, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119793

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.


Asunto(s)
Mycobacterium tuberculosis , Sideróforos , Sideróforos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Espectrometría de Masas en Tándem , Hierro/metabolismo
8.
mBio ; 14(4): e0034023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37350592

RESUMEN

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. The biological basis for the essentiality of NAD(P) in most settings, however, remains experimentally unexplained. Here, we report that inactivation of the terminal enzyme of NAD synthesis, NAD synthetase (NadE), elicits markedly different metabolic and microbiologic effects than those of the terminal enzyme of NADP biosynthesis, NAD kinase (PpnK), in Mycobacterium tuberculosis (Mtb). Inactivation of NadE led to parallel reductions of both NAD and NADP pools and Mtb viability, while inactivation of PpnK selectively depleted NADP pools but only arrested growth. Inactivation of each enzyme was accompanied by metabolic changes that were specific for the affected enzyme and associated microbiological phenotype. Bacteriostatic levels of NAD depletion caused a compensatory remodeling of NAD-dependent metabolic pathways in the absence of an impact on NADH/NAD ratios, while bactericidal levels of NAD depletion resulted in a disruption of NADH/NAD ratios and inhibition of oxygen respiration. These findings reveal a previously unrecognized physiologic specificity associated with the essentiality of two evolutionarily ubiquitous cofactors. IMPORTANCE The current course for cure of Mycobacterium tuberculosis (Mtb)-the etiologic agent of tuberculosis (TB)-infections is lengthy and requires multiple antibiotics. The development of shorter, simpler treatment regimens is, therefore, critical to the goal of eradicating TB. NadE, an enzyme required for the synthesis of the ubiquitous cofactor NAD, is essential for survival of Mtb and regarded as a promising drug target. However, the basis of this essentiality was not clear due to its role in the synthesis of both NAD and NADP. Here, we resolve this ambiguity through a combination of gene silencing and metabolomics. We specifically show that NADP deficiency is bacteriostatic, while NAD deficiency is bactericidal due to its role in Mtb's respiratory capacity. These results argue for a prioritization of NAD biosynthesis inhibitors in anti-TB drug development.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , NAD/metabolismo , NADP/metabolismo , Ligasas/metabolismo
9.
J Med Chem ; 66(22): 15380-15408, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37948640

RESUMEN

There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.


Asunto(s)
Benzofuranos , Mycobacterium tuberculosis , Sintasas Poliquetidas , Antituberculosos/química , Mycobacterium tuberculosis/metabolismo , Benzofuranos/química , Pruebas de Sensibilidad Microbiana
10.
Nat Microbiol ; 7(6): 766-779, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637331

RESUMEN

Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/metabolismo , Antituberculosos/farmacología , Genómica , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética
11.
J Med Chem ; 65(1): 409-423, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34910486

RESUMEN

With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Benzofuranos/farmacología , Palmitoil-CoA Hidrolasa/antagonistas & inhibidores , Piperidinas/farmacología , Sintasas Poliquetidas/antagonistas & inhibidores , Benzofuranos/síntesis química , Cardiotoxicidad , Descubrimiento de Drogas , Canal de Potasio ERG1 , Corazón/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/síntesis química , Relación Estructura-Actividad
12.
Nat Commun ; 13(1): 5992, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220877

RESUMEN

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Asunto(s)
Lisina-ARNt Ligasa , Mycobacterium tuberculosis , Tuberculosis , Animales , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/farmacología , Ratones , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico
13.
ACS Infect Dis ; 7(1): 141-152, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33319550

RESUMEN

MmpL3, an essential mycolate transporter in the inner membrane of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse antitubercular drugs. However, several of these molecules seem to have secondary targets and inhibit bacterial growth by more than one mechanism. Here, we describe a cell-based assay that utilizes two-way regulation of MmpL3 expression to readily identify MmpL3-specific inhibitors. We successfully used this assay to identify a novel guanidine-based MmpL3 inhibitor from a library of 220 compounds that inhibit growth of Mtb by largely unknown mechanisms. We furthermore identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for MmpL3 inhibitors and report a novel sulfanylacetamide as a potential QcrB inhibitor.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Membrana , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos
14.
EMBO Mol Med ; 13(1): e13207, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33283973

RESUMEN

The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1 F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antibacterianos , Antituberculosos/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Oxidorreductasas , Tuberculosis/tratamiento farmacológico
15.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33395287

RESUMEN

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Asunto(s)
Antituberculosos/química , Pirimidinonas/química , Animales , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Semivida , Humanos , Hierro/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microsomas/metabolismo , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Pirazoles/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacología , Ratas , Relación Estructura-Actividad
16.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33521468

RESUMEN

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

17.
Nat Commun ; 10(1): 4970, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672993

RESUMEN

The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.


Asunto(s)
Antituberculosos/uso terapéutico , Desarrollo de Medicamentos , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Mycobacterium tuberculosis/genética , NADH Deshidrogenasa/genética , Tuberculosis/tratamiento farmacológico , Adaptación Fisiológica/genética , Animales , Callithrix , Transporte de Electrón , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Imidazoles/farmacología , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , NADH Deshidrogenasa/antagonistas & inhibidores , Piperidinas/farmacología , Piridinas/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/patología
18.
ACS Infect Dis ; 5(4): 598-617, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30652474

RESUMEN

The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.096-6.2 µM) but is inactive against nontuberculosis mycobacteria and Gram-positive and Gram-negative pathogens (MICs > 1000 µM). Complementation studies with biotin biosynthetic pathway intermediates and subsequent biochemical studies confirmed acidomycin inhibits biotin synthesis with a Ki of approximately 1 µM through the competitive inhibition of biotin synthase (BioB) and also stimulates unproductive cleavage of S-adenosyl-l-methionine (SAM) to generate the toxic metabolite 5'-deoxyadenosine. Cell studies demonstrate acidomycin selectively accumulates in M. tuberculosis providing a mechanistic basis for the observed antibacterial activity. The development of spontaneous resistance by M. tuberculosis to acidomycin was difficult, and only low-level resistance to acidomycin was observed by overexpression of BioB. Collectively, the results provide a foundation to advance acidomycin and highlight BioB as a promising target.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Sulfurtransferasas/antagonistas & inhibidores , Tiazolidinas/farmacología , Tuberculosis/microbiología , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/farmacología , Biotina/biosíntesis , Caproatos/síntesis química , Caproatos/química , Caproatos/farmacología , Farmacorresistencia Bacteriana , Humanos , Cinética , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Sulfurtransferasas/química , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Tiazolidinas/síntesis química , Tiazolidinas/química , Tuberculosis/tratamiento farmacológico
19.
Science ; 363(6426)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30705156

RESUMEN

Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb's cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4'-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Coenzima A/metabolismo , Guanidina/análogos & derivados , Hidrolasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Urea/análogos & derivados , Proteína Transportadora de Acilo/metabolismo , Animales , Dominio Catalítico , Farmacorresistencia Bacteriana/genética , Femenino , Guanidina/farmacología , Hidrolasas/genética , Metabolismo de los Lípidos , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Operón , Unión Proteica , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas , Urea/farmacología
20.
ACS Infect Dis ; 4(7): 1102-1113, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29663798

RESUMEN

5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10-7 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( KD = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 µM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10-10) demonstrating it successfully overcame Rv3406-mediated resistance.


Asunto(s)
Antituberculosos/farmacología , Ligasas de Carbono-Nitrógeno/metabolismo , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Nucleósidos/metabolismo , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleósidos/química , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA